Consistent Changes
User’s Guide

Version 7.4
June 1991

© copyright June, 1991 JAARS, Inc.

Consistent Changes User’s Guide

Table of Contents

Chapter 1 Introduction To ConsistentChanges 3
1.1 NotesonThisManual 3
1.1.1 PUrpose e e e e 3
1.1.2 Prerequisites for Understanding This Manual 3
1.1.3 Documentation Conventions 3
1.2 How Can Consistent Changes HelpMe? 3
Chapter 2 Creating And Using AChange Table 5
2.1 CreatingaChangeTable 5
2.2 UsingaChangeTable 5
Chapter 3 Consistent Changes Description 8
3.1 FormofChanges 8
3.2 How Changesare Processed 9
3.3 OrderofChanges 9
3.4 Command Description 10
35 1/00ptions e 26
3.6 Running CC from the Command Line 28
Chapter 4 Advanced Features. v v v v e e e e e e 30
4.1 Storage Commands 30
42 The Back Command 36
4.3 GroupsS . . . o v e e e e 38
4.4 Switches e 40
4.4.1 Introduction 40
4.4.2 Whatthe CommandsDo 41
4.5 ArithmeticCommands 44
Chapter 5 Quick Reference.o 46
5.1 ErrorMessages e 46
5.2 Alphabetical Summary of Commands 52
5.3 Commands by Logical Groupings 54

54 ASCIICodes 56

Consistent Changes User's Guide

Consistent Changes User’s Guide

Chapter 1 Introduction To
Consistent Changes

1.1 Notes on This Manual

1.1.1 Purpose
This manual is basically designed to be a reference manual, although instructional infor-
mation has been included on some of the more advanced features of the Consistent
Changesdc) program. The purpose of the manual is to fully describe¢tgrogram
(cc.exp), which is part of the Direct Translator Support package. This manual does not
include a tutorial for beginners, but a separate tutorial entitled “Usirzct{téonsis-
tent Changes) Processor” has been distributed with this “Consistent Changes User’s
Guide” as a part of thets documentation.

1.1.2 Prerequisites for Understanding This Manual

1. Familiarity with the computer to be used and a working knowledge®fin-
cluding how to change directories and start programs fromak@rompt.

2. Ability to useeD or some other word processor to produce unformatted text files.
(See the manual for your word processing program if you are unsure of how to
do this.)

1.1.3 Documentation Conventions
The following visual cues have been used in this documentation to help you interpret the
information presented.

italic type Used for anything that you must type exactly as shown.

Italic type is also used farc commands and their arguments, refer-
ence to a specific part ofcx table, or words that are given special
emphasis.

bold type Used for information you must provide. For example, in place of
the wordfilename, type in the name of a file.

ALL CAPITALS Used for directory names, file names, acronyms, and command
names.

Also used for names of keys on the keyboard, for exargiieL>,
<ENTER>

<CTRL> + key The plus sign between key names means that you hold down the
first key and press the second key. For exampierL>+ ¢ means
hold theconTROL key down and press

The contents of files will be shown as mono-spaced type. The computer’s response to
what is typed will also appear as mono-spaced type.

1.2 How Can Consistent Changes Help Me?
Thecc program is useful for finding all occurrences of specified characters, words, or
phrases in a text file or series of text files, and making some type of change to this data in
a consistent way. The change may be done in every occurrence found or only when cer-
tain conditions are met.

Consistent Changes User's Guide

ccis like the “search and replace” feature in a text editor, except much more powerful be-
cause it allows you to make changes which take context into consideration. Beyond the
search and replace featuog, can also be used to count words in a text, insert or remove
text, or reorder parts of a text.

Consistent Changes User’s Guide

Chapter 2 Creating And Using
A Change Table

2.1 Creating a Change Table
In order to use the Consistent Changes program, you must have a text file that describes
the changes you want made. This file is called a change table. There are several change ta-
bles in thepTs package for handling scripture. You may either use an existing change ta-
ble, modify an existing table or create your own table. The table can be executed by
running the Consistent Changes program as described in section 2.2.

A change table can be created or modified usimgr almost any other word processor. If
you are using some program other thanbe sure that you save your document as an un-
formatted text file (with line breaks ins-word). The filename extensionccT” is com-
monly used when namirzg tables.

The simplest change table instruction will haveearched-for item (search string) a

pair of quotes (double or single). This will be followed on the same line by a space, a right
wedge, and another space. Next will be the desigldcement (replacement string)

again in quotes. The right wedge is an integral part afth@mmand and is not enclosed
within quote marks. The right wedge separates the search side of the table entry from the
replacement side.

For example, suppose you wanted to change all occurrences of “house” to “home”. In a
small text file, you would probably make the changes yourself in your word processor.
However, making the changes to a large file, or a whole series of files, could take a long
time, and typing errors might occur in the process.

The following simplecc table could be used to accomplish this change quickly and accu-

rately:
"house" > "home"
Input:
Our house is a very fine house. We like our house.
Output:

Our home is a very fine home. We like our home.
See section 3.1 for a more detailed description of the format of a change table.

As you write your change table, it is very important to remember hoactheogram

works:cc “reads” your text fileone character at a time\s the program reads a charac-

ter, it tries to match it to a search string on the left side of the change table. If it matches
an entry the program obeys the commands on the right side of the table and the replace-
ment text is sent to the output. The piece of input that matched does not go to the output.
Remember thatc is a search and replace program. Once it finds what it is searching for,
it replaces it with something else. If a character of text doesn’t match any search string, it
goes straight to the output and theprogram reads the next character.

See the tutorial “Using thec (Consistent Changes) Processor” for more examples and
further explanation of howc works.

2.2 Using a Change Table
This section assumes that you have found thefilexe on yourdTs diskettes, and that it

Consistent Changes User's Guide

has been copied into your current directory or into a directory that has been included in
your DOS path.

When you rurcc, it will ask you for three filenames: the changes file, the output file, and
the input file, in that order. The changes file contains the instructions that teliat to
change. The output file is the fitec will create as it applies the changes to the input file.
The input file contains the text you want changed.

Thecc program doesn’t actually change the input text file, it creates a new text file like
your original input file, except the changes specified in the change table have been made
to it. So, in the end you will have a “before” and “after” version of your file.

In the following instructions, what you type is in bold print. After typing in the answer to
each question, press thENTER>key.

At the DOS prompt, type CC<ENTER>
The Consistent Changes program will &8kanges file?

Type the name of the change table file you have created, therpness> If you do
not include a file extension, tkee program will first look for the file without an exten-
sion. If it cannot find a file without an extension, it will look for the file with @cT” ex-
tension. If it still does not find the change talade will respond:

filename not found. Changes file?
You will then have an opportunity to enter the correct change table filename.
The program will then askOutput file?

At this point, type the name of the “after” or output text file, to be createxthen
press<eNTER>. If you only want to view the output on the screen, you maytype in-

stead of a file name. If you want to send the output to a parallel printerRyper

LPT1:. To output to a serial printer, tyg®Mm1: or com2:. (Users of older versions should
note thatc no longer makes use of printer definition files. This means you may not spec-
ify something liker321: or EPSONLQ:. cC will only output to disk files or to physical de-
vices such asoN: andPRN:.)

When writing the output to a file, if there is already a file by that name in that directory,
thecc program will respond:

filename already exists. Replace it [no]?

If you wish to keep the existing file with that name (or if you aren't sure), respeeN-
TER>, andcc will reprompt for the name of the output file. If you want to overwrite the ex-
isting file, answey <ENTER> (CAUTION : If you accidentally typed the name of your input
file here, respondo; otherwise it will be destroyed.)

The next questionc will ask is: Input file?
Type the name of the file containing the text you want changed, the “before” text file. If

the program can't find a file you named, it will give you a chance to enter a different input
file name. The program’s response will be:

Consistent Changes User’s Guide

filename not found.
Input file?

After you specify the input file, the program will process your file. Just before it finishes,
it will beep and ask:

Next input file (<KRETURN> if no more)?

If you want multiple files combined into one output file, type in the next filename. Your
previous file will be completed and the next file will be treated as a continuation of it. Any
number of files can be combined in this manner. If you presseR>only, the remainder

of your file will be output and the program will then stop, returning you to the system
prompt.

If for any reason you need to stop the program after it has starteds@ress + c. If you
were outputting to a printer, a few more lines may continue to print because the printer
holds some of the information internally before printing it.

If you type/b <ENTER>in response to the “Output file?” or “Input file?” questions, the
program will back up and ask the previous question again. This allows you a chance to
give a new answer to the question if it was answered incorrectly. If a mistake is discov-
ered after pressingENTER>in response to the “Input file?” question, your only recourse
iS pressCTRL> + ¢, then rerun the program.

(See section 3.5 for a description of otheroptions available).

Consistent Changes User's Guide

Chapter 3 Consistent Changes
Description

3.1 Form of Changes
A change file must be created befaxis run. A change file is a text file which consists
of one or more change entries. All change entries are of the form:

search > replacement

Thesearchmust fit on a single line. Thight wedge(>) must be on the same line as the
search. Theeplacementnay be any number of lines. Blank lines are allowed.

Both the search and the replacement are made up of any combination of the following ele-
ments:

1. Strings
This is a sequence of one or more printable characters. Such sequences of characters are
enclosed within matching sets of single or double quotes. If the replacement is on more
than one line, each line must be enclosed in its own set of quotes. Any string containing
a single quote mark must be enclosed in double quote marks, and any string containing
a double quote mark must be enclosed in single quote marks.

2. Commands or keywords
These are short or abbreviated words which instruct the Changes program to perform
certain functions. Commands aret enclosed in quote€ommands must be sur-
rounded by spaces or tabBhe commands are listed in Section 3.4.

3. ASCII codes
It is sometimes necessary to use non-pringsigl codes in ac table. Both printing
and non-printing characters can be representedasith codes; however, it is usually
best to simply enclose a printing character in quotation marks rather than use its corre-
spondingascil code. For example, it is easier to type and understarttian its deci-
mal valued65

A complete chart okscil codes has been included in section 5.4. Discussion follows on
decimal, hexadecimal, and octal codes, respectively.

Thedecimalascil value of the character may be usedhoutquotes, if it is immedi-
ately preceded by ad” (either upper or lower case). For exampl@would represent a
<BACKSPACE> andd9 a<T1AB>). The “d” and the ASCII code must be surrounded by
spaces or tabhascil control codes are listed at the very end of this manual. The deci-
mal codes 1-255 are legal before and after the wedge. Note, however, that decimal
codesd10(linefeed),d13 (carriage return), and26 (end of file) may yield unexpected
results and should not be used.

Thehexadecimahscii value of the character may be ussihoutquotes, if it is imme-
diately preceded by arnx® (either upper or lower case). For exampi@would repre-
sent a<BACKSPACE?>). If and only ifhexadecimal is used, only ong"“need precede
multiple Ascil codes (egX7EO08is tilde +<BACKSPACE>). If you do this, howevehe

sure that each ASCII code is expressed using 2 dagtgilde +<BACKSPACE>should

be represented b§7 EO8 notx7E8. The hexadecimal codes 1-FF are legal before and
after the wedge. Note, however, tR@#, xOD, andx1Amay yield unexpected results
and should not be used.

Consistent Changes User’s Guide

3.2

3.3

Note: Octal may be used byot preceding thesci code with anything (eg. 10 is
<BACKSPACE>. The octal codes 1-377 are legal before and after the wedge. Note, how-
ever, that 12, 15, and 32 may yield unexpected results and should not be used.

WARNING! Although use of octal numbers greater than 377 will result in an error mes-
sage, use of octal numbers greater than 100000etiiroduce an error message.

4. Spaces or tabs
Spaces and tabs separate the strings, commandss@ndodes from one another and
from the wedge. These spaces and tabs are ignored dhyring processing, but at least
one space or tab is required as a separator.

How Changes are Processed

Once a match string has been found in the input data, the program does whatever is on the
replacement side of the wedge. The matched string is not sent to output unless the replace-
ment side containsdup command or explicitly puts it into the output. Then, instead of
continuing to move through the table with the same data, it moves on to the next piece of
input data. Data is only processed once, unless it is brought back into the input from the
output with theback(v)command.

Order of Changes

Change entries are sorteddyprior to any processing of the input text. They are sorted
according to the number of characters that are being searched for on the left side of the
wedge, longest search string first. If the word “sentimental” was in the input file, it would
be changed to “emotional,” not “sentipeopletal” in the output file, becauiases the
longest match string (in this case, line 2) first.

"men” >"people” clinel
"sentimental” > "emotional” c line 2

If more than one group is being used, the changesoarixed. Groups will be searched
in the order requested, regardless of the length of change strings in any of the other
groups.Within the groups, however, changes will be searched longest first.

Note that in the following example, line 2 has precedence over line 1:
begin > store(affix) "abc" endstore

"test” > "X clinel
"test" fol(affix) > "y" cline 2

Also, any(name}akes precedence oviet(name)or prec(name)Iin the following exam-
ple, line 2 has precedence over line 1:

begin > store(affix) "abc" endstore

"test” fol(affix) > "fol* cline 1
"test" any(affix) > "any" cline 2

The reason for this is thidl(name)andprec(namepreconditions forthe match, nopart
of the match, as opposedany(name)which is actuallypart ofthe match (see Chapter 3
for a more detailed information dol(name) prec(name)andany(name)).

In general, the following rule is used wheais sorting entriesany(namehas the same

Consistent Changes User's Guide

weight as one full charactdgl(name)andprec(namekach have weight of 1/10th of a
character. This guarantees that entries faifftmame)or prec(namewill take precedence
over similar entries without thfel(name)or prec(name)as inEXAMPLE 2), but entries
with any(namewill take precedence over similar entries Wil(name)(as inEXAMPLE
3).

The only time search entries are not sorted by length is when they have the same relative
length — for example:

begin > store(1) 'aeiou’ endstore
'xa' > 'ksa’
X" any(1) > dup

In this casecc will process the lines in order. When the string “xa” is encountered “ksa”
will be output. Even though the next entry would also match the input and appears longer,
cc equates both lines as having the same length. Thus, the “xa” entry remains first in this
group and is processed first.

Just to cover all the other cases where ordering of table entries might cause prblems,
has an ‘unsorted’ option so that you can completely supp@ssorting. To use this op-
tion, place the keyword ‘unsorted’ on theginline as in the following example:

begin > unsorted

"a" >"x"
Ilabll > Ilyll

Whencc is processing this table, it will always search the entries in the order they physi-
cally appear in the table, thus for the input text “abc” the output would be “xbc” (rather
than the output of “yc” which would be expected if the ‘unsorted’ option was omitted).

WARNING WARNING WARNING : We STRONGLY discourage use of the ‘unsorted’ option
because it violates the “longest match first” principle. This can make a table very confus-
ing for a human reader to understand or predict what will happen to his data because it
changes the very nature of how operates.

3.4 Command Description
All commands must be enteredlawer case

In the list of commands that follows, you will notice that some commands take a parenthe-
sized argument (an example of an argument isiéineein store(name)

Some commands that take an argument take a value, represented by (v). There are three
such commands:

back(v)
fwd(v)
omit(v)

Other commands that take an argument take a string, represemie&®yAny combina-

tion of printable characters (including numbers) can be used in a string as an argument for
these commands (except a comma, which is used as a separator for multiple arguments).
These strings are case-sensitive. In other woxsill treat store(NAME)and

store(nameps two different stores.

Consistent Changes User’s Guide

There are four classes of elements which can be named:

defined sets of commands
— groups

storage areas

— switches

The naming of each is totally independent of the naming of any of the others. (eg. nothing
automatically happens to switelkampwhen something is stored in amamp

Any command which takes a parenthesized string argunaemémay take more than one
string, separated by commas (i,j,k). This has the effect of repeating the command. For ex-
ample,if(1,2) is the same af1) if(2). For some commands (edefing the use of multi-

ple names is meaningless; for others it could be misleadingigegl,2)does not equal

use(1) use(?)

add(name) ‘number’ — ADD number TO STORE name
This command adds the valuemafmberto the value in storage areame It can only be
used on the right side of the wedge. The results of the operation are stuaietkireplac-
ing nameés previous contents. For example, the following will output “56”:

begin > store(test) '22’ endstore
add(test) '34’
out(test)
Note: A sign (+ or -) may precede the number. Leading zeros in a storage area will be re-
moved after an add (or any other arithmetic operation ekuapt If store(testhad
“0022" in the above example before the add operation, the final result would still be “56”.

any(name) — ANY ELEMENT OF STORAGE AREA name
This function causes a match if any single character in the specified storage area is found
in the input data. It may be combined with a string or used alone. This command can only
be used on the left side of the wedge. It is useful for matching words which use any ele-
ment of a closed class (eg., any vowel). In contrast tpre fol andwd commands, the
character is actually matched and can be outputdmitior stored in a storage area.

For example, you could change all the consonarsand all the vowels tW in a text,
then run it through the wordlist programtL) to get a count of all the word-leveV pat-
terns:

begin > store(vowel) 'aeiou’ endstore
store(cons) 'bedfghjkimnpqgrstvwxyz’ endstore
store(punct) ".,"?:;10[{} endstore

any(vowel) >’V ¢ Vowels become V
any(cons) >'C’ ¢ Consonants become C
any(punct) >"” ¢ Remove punctuation

This will delete all punctuation, change all vowels to 'V’, and all consonants to 'C’.
See also the example under thecommand.
append(name) — APPEND TO STORAGE AREA name

This command is quite similar to teore(namefommand. However, treore(name)
command causes the previously stored contents ohareato be discarded, whereas the

Consistent Changes User's Guide

append(namegommandetains the previous conterdasd inserts the new data at the
“end,” following any data that was already in the storage area. This command can only be
used on the right side of the wedge.

back(v) — MOVE BACK v CHARACTERS FROM OUTPUT
This command causes the lastharacters output to be removed from output or storage
and put back into the input stream of text, so it can be checked for a match again. This
command can only be used on the right side of the wedge. The maximum number of char-
acters that can be backed over is 300 characters, or to the beginning of the storage area (or
output), whichever is less. For example:

" '>""back(1)

changes all sequences of spaces to one space, because the space character that has been
output can again be a part of the following match. Note that the nuwncbenot be larger

than 127, but more than ohackcommand can be used to back up a total of 300 charac-
ters.

Be careful when using the back command, since it is easy for the table to become hung up
in an endless loop. If you use the back command, make sure there is either something else
in the group that will match the results or send the table to another group with the use com-
mand. For example:

group(1) c make orthographic changes in word entries only
W’ > dup use(2)

group(2) c change ae to e and return to group one
‘ae’ >'e’
'\' > dup back(1)

Without ausecommand to get the program outgobup(2) the program will hang up
when it comes to the next back slash. It will recognize the back slash, dup it, back up, rec-
ognize the back slash, dup it, back up ... on and on.

begin — BEGINNING OF INPUT FILE OR NESTED BLOCK
If used on the left side of the wedtiés command must be by itself, without quotes
around it, and it must be the first entry in the talflmnimentshowever, may occur be-
fore thebeginentry). The replacement which follows thegincommand will be exe-
cuted before any input data is read. It will not be executed again.

Theendfilecommand cannot be used after leginstatement for initializing a tablec
will give the error message

'CC-F-Defaulting to non-existent group 1'.

On the right side of the wedghjs command is used in conjunction with #melcom-

mand to separate a command or string from other commands or strings. They are primar-
ily used for nestingf’'s andelsées. Note thaif's andelses cannot be truly nested without
usingbeginandend See thendcommand for an example of this.

Thebeginandendcommands must be used to tell the program when a string ends for
mathematical or comparison operation and the next string begins for data that is to be out-
put. For example:

Consistent Changes User’s Guide 13

nl > add(count) '2’ nl ¢ causes an error

This produces an error, becauseconsiders thal command as part of the string that
should be added. Another example is with comparing strings.

" > ifeq(fruit) 'apple’ "We have apples.’ nl
else 'We do not have apples.’ nl
endif c this also will not work

Even though the contents of storage area fruit is equal to “apple” the command is compar-
ing it to “appleWe have apples.” And the program will output the message “We do not
have apples.”

To overcome this problem, use theginandendcommands.

nl > begin
add(count) '2’ c this works
end
nl
" > ifeq(fruit) "apple’
begin
'We have apples.’ nl
end
else 'We do not have apples.’ nl

endif

The table will generate no errors and will produce the correct output.

¢ — COMMENT
This command may occur on a line of its own or on the right side of the veedlge,
rounded by space#t is used to indicate comments which explain to the user the purpose
of entries in the table. The rest of a line containiegsaignored by the program.

Although the comment lines are ignored by the program, they are the most important lines
in a change table for the user. Comments should be added to the beginning of any table to
explain the purpose of the table, the form of the expected input text and include the
author's name. This information could be of great value later when trying to figure out

how the table works, so modifications can be made. Comments should be added through-
out the table to describe the purpose of each group, store, switch and define when there
are more than one of each. On tables longer than one page these comments should be
grouped together either at the beginning or the end of the table so the user can find them
easily.

caseless — CASELESS MATCH
This command is placed on the right side of the wedge ingfmsection of the table.
(See thébegincommand). It will be applied to all of the input data. The caseless com-
mand causes the first letter of a potential match string from the input to be treated as if it
were a lowercase letter during the matching process, regardless of whether it was upper or
lowercase in the input file. For this reason, the first character in the match string must be
lowercase for a match #vER occur when using caseless. Note: All other characters in the
match string are matched exactly, and cas@isignored.

If the replacement string begins with a lowercase letter, the case of the first letter of the
matched string will be preserved in the output. If the replacement string begins with an up-

14 Consistent Changes User's Guide

percase letter, the first letter of the output string will always be output as an uppercase let-
ter, regardless of the case of the first letter of the input string that was matched.

Note that caseless only works with the alphabetic letters a-z and A-Z. It will not apply to
the first character of a string which does not begin with a letter.

clear(name) — CLEAR SWITCH name
This command clears (un-sets) a switch which was sesbjcammand.

cont(name) — CONTENTS OF STORAGE AREA name
On the search sidehis function causes the contents of the specified storage area to be
treated like a match string. For example:

begin > store(quark) "abcd" endstore
cont(quark) > "wxyz"

will function exactly like “abcd” > “wxyz”

On the replacement sidthis function is used in conjunction with tifieq(name) ‘string’,
ifneg(name) ‘string’ andifgt(name) ‘string’commands. For example:

X' > ifeq(proton) cont(quark) out(quark)
endif
says “if the contents of storage apgaton equals the contents of storage ayeark”

define(name) — DEFINE SET OF COMMANDS name
This command allows the user to define a set of commands to be executed by the
do(namexommand. You may define up to 127 such sets, distinguishing them by using a
different string fomame Whatever number or name you userfamewhen youdefine
the set for the first time is what you must use when you subseqdeiittifsee the
do(hamexommand). The form of the command is:

define(name) > commands to be executed

As a matter of practice, it is probably best to put all defined commands at the beginning of
the table, after theeginstatement, and before the first group. This command occurs only
on thesearch sidef the table.

div(name) ‘number’ — DIVIDE STORE name BY number
This command divides the value in the storage ma@aeby the value specified byum-
ber. The results of the operation are storedame replacinghames previous contents.
For example, the following will output “7”:

begin > store(results) '21’ endstore
div(results) '3’
out(results)

Any remainder will be discarded. In the following example, 21 divided by 5 is
equal to 4 with a remainder of dc will discard the remainder “1” and store a “4” in
store(results)

begin > store(results) '21’ endstore
div(results) '5’
out(results)

do(name) — DO SET OF COMMANDS name
This command causes a set of commands which were specifiedefipe(nametom-

Consistent Changes User’s Guide 15

mand to be executed. It can only be used on the right side of the wedge. For example:

define(vowel) > "*** dup "***’
'a’ > do(vowel) set(proton)
‘e’ > do(vowel) set(neutron)
‘I > do(vowel) set(nucleus)
‘0’ > do(vowel) set(quark)
'u’ > do(vowel) set(fusion)

Thedo command is more flexible than thextcommand becausk can be used before
other commands, antextcannot. Alsodo commands can be “nested,” that is, they can
be used inside afefines, up to a “depth” of 10. For example:

define(1) > 'x’ do(2) 'X’
define(2) > 'y’ do(3) 'y’
define(3) > 'z’

‘a’ >'w' do(1) 'w’

In this example, agn, will be changed tavxyzyxw

In this example, when the commadha{1) is encountered in the table, it causego exe-
cute the commands following tlefine(1)command. Those commands happen to in-
clude ado(2) command which causee to execute the commands following thefine(2)
command. Those instructions happen to include(8) command, which causes to
execute the commands following ttiefine(3)command. At this point the nesting depth
is three. After the commands following ttiefine(3)command are finishedc will go

back and finish the commands (if any)diefine(2) When finished doindefine(2) cc

will go back and finish the commands (if any)diefine(1) When finished doinde-

fine(1), cc will go back and finish the commands (if any) on the line that originally con-
tained thedo(1) command.

dup — DUPLICATE SEARCH ELEMENT
This function will duplicate the search element of the change into the output file or stor-
age area. Duplication may be done repeatedly.

else — ELSE
Theelsecommand signals the program to take action when the condition examined by the
if statement is not true. It also signals the program to stop taking action when the condi-
tion examined by thié statement is true.

Theelsecommand is the second part of the three parts of gtatement. The first part is
theif command and the last is the closerglifcommand. Thelsecommand is optional.

‘I will ” > dup if(rain) 'stay inside.’
else 'go for a walk.’
endif

Putting thiscc table into English would give, “I will stay inside if it is raining, otherwise
I will go for a walk.”

Note how thef, else andendifcommands were aligned. This is not necessary for the ta-
ble to function, but makes it easier to see what action will take place when the condition is
true or false. And shows that there isemdif command to terminate tlifecondition.

16 Consistent Changes User's Guide

If you must check on multiple conditions, you should usd#gnandendcommands
for nesting. See thendcommand for an example of this. See #igmme), ifeq(name),
ifgt(name), ifn(name), ifneq(name)

end — END OF NESTED BLOCK
This command indicates the end of a block of neitedrelses. The corresponding block
initiator is thebegincommand. (Do not confuse thegincommand which initiates a
nested block with thbegincommand which allows commands to be executed at the be-
ginning of a file.) For example:

X' > if(1)
begin
if(2) 'a’
else’b’
end
else
begin
if(2) 'c’
else 'd’
end
¢ The preceding entry outputs a if 1 and 2 are on,
¢ biflisonand 2 off, cif 1is off and 2 on,
¢ anddif 1 and 2 are both off

Endcan also indicate the end of a repeated block of commands. (3epdatom-
mand.)

endfile — END OF INPUT FILE
The replacement for this command will be executed after all input data has been read and
processed. This command must be listed as the only element of a search. The last element
of the replacememhustalso beendfile(or dup), or the program will not stop. For exam-
ple:

endfile > out(3) endfile c store 3 out at very end

This endfileentry may occur at any point in the table, it does not have to be last.

endif — END IF
This command marks the end of a conditional segment of a replacement specification. It
applies taall conditionals currently in effect, unless nested withbébginandendcom-
mands. See alstiname), ifeg(name), ifgt(name), ifn(name), ifneg(name)

endstore — END STORING
This command will cause any storing in effect to stop. It re-routes the output from storage
to the actual output file. Sestore(name)

excl(name) — EXCLUDE GROUP name
This command will exclude the gromame(see thgroup(nameommand) from the
groups thatc is currently using. It can only be used on the right side of the wedge. This
table:

Consistent Changes User’s Guide 17

begin > use(dos,mac,unix,windows)
use(dos,mac,windows)

will have the same effect as this table:

begin > use(dos,mac,unix,windows)
excl(unix)

It has the opposite effect of thrcl(name)command.

fol(name) — MATCH IF FOLLOWED BY ANY CHARACTER IN name
This function will cause the string to be matched only wb#awedby any one of the
characters contained in the storage agrae Note that the character itself is not matched
and will not be output by th#up command. The character is@ndition ofthe match, not
apart ofthe match.

This function should be used only on the search side, between the match string and the
wedge. It is particularly convenient for matching strings which are required to be at the
end of a word. All word-final punctuation, including space, can be stored in a particular
storage area and used with fo€name)command. Here is an example of thiecom-

mand:

begin > store(vowel) 'aeiou’ endstore
store(stop) 'bdg’ endstore
any(vowel) fol(stop) > dup dup

This would double any character found in storage ewesl(a, €, i, 0, or u) that was fol-
lowed by one of the characters in storage area(b, d, or g).

More than ondol(name)command may be used in succession. For example, the com-
mand‘test’ fol(1,2,3)will look for test followed by something in storage argdollowed
by something in storage ar2afollowed by something in storage afka

Compare this with the commandsli(name), prec(namgandany(name)

fwd(v) — MOVE FORWARD v CHARACTERS
This command causes the nextharacters that would be input to be passed directly to
output or storage, without being considered for matching in the table. This command may
only be used on the right side of the wedge. Althougannot be greater than 127, as
many as 300 characters may be forwarded in sequence by using more tivea('one
command; attempting to move more than 300 characters will be regarded as an error con-
dition, and an appropriate message will be given.

group(name) — GROUP OF CHANGES name
This command identifies the following changes as belonging to the geosnp Which
group of commands is currently active is controlled byudefname)incl(name)and
excl(nameommands. If a table consists of only one groupgtbap command isot
necessary. You may define up to 127 groups, distinguishing them by using a different
string for eaclname Whatever name you choose f@amein thegroup(namelommand
is the name you must specify when you subsequently make the group active with the
use(namefommand.

This command is put at the beginning of a line by itself andtigollowed by a wedgén

Consistent Changes User's Guide

a sense, it is not a command, but a label at the beginning of each set of change entries.

Groups are particularly useful when certain changes are wanted in one context but not in
another, eg., changing the orthography of one language inside a bilingual dictionary file.

If the change table is longer than two pages, then numbers should be used for each group
name instead of string names. This will make it easier for the user to follow the flow of
the table when the program changes groups.

The program will always start with the group that has a name of “1” or the first group in
the table, if there is ngroup(1) However, aisecommand in th&eginstatement can in-
itialize the table to start with a specific group or groups active.

If a number followed by letters is used as the name of a group, that number is associated
with that group name when the table is loaded. Should that name begin with the numeral
1, that group will function as though it wegeoup(1)and will become the first active

group in the table unless otherwise designated. For example:

begin > caseless

group(main)
\W' > dup use(1st)
\d’ > dup use(1st)

group(1st)

>V

1b7 > ,C,

\' > dup back(1) use(main)

cc will begin processing text using the set of changes fougobimp(1st)not in
group(main)as you might expect. This featureaaf could cause strange looking output,
until the table gets in synch with the data coming into it.

if(name) — IF SWITCH name IS SET
Theif command checks the status of swiilschme)and executes the following commands
based on the condition of the switch. Theommand can only be used on the right side of
the wedge.

If the switch is set, then following replacement commands are executede(@eane)
andclear(name)commands). If the switch is clear, then the following replacement com-
mands are ignored.

There are three parts to filcommand, and thi§name)is the first part. The last part is
theendifcommand. The second part (optional) isglscommand.

Theif command may be nested with otferommands (checking for multiple conditions)
by using thebeginandendcommands. (Seendcommand for an example of nested
commands.) See al#fa(name)

ifeq(name) ‘string’ — IF STORE name EQUALS string
This command executes the following commands if the content ofretoreexactly
matches the string. It can only be used on the right side of the wedge. The sequence
'string’ is any combination of literal stringsls, andascii characters (such d8 for back-
space). Theont(namerommand can be used instead of a string to compare the contents
of storenameto the contents of another storage area. (Sesothtéhamelommand.) For
example:

Consistent Changes User’s Guide 19

'x’ > ifeg(orange) 'apple’ set(ripe)
endif

will have exactly the same results as:

'x' > store(fruit) 'apple’ endstore
ifeq(orange) cont(fruit) set(ripe)
endif

The string is terminated by the following command. Notenh&t considered a character
and will not terminate aifieq or write command, nor wilt, endfile or*’ (null) .

The conditional execution is terminated byesdlif or elsecommand, or by the end of the
table entry. Note that when doing comparisons of storesifed(), ifneq()andifgt(), any
leading zeros that may be in the store will be irrelevant becausgempts a numerical
comparison of stores before it does a byte-for-bgt@i comparison.

See also the discussion underiffriame)command.

ifgt(name) ‘string’ — IF name IS GREATER THAN string
This command is very similar to tifeq command, in that it compares the contents of
storenameto the following string or to the contents of another storage area. It can only be
used on the right side of the wedge. If the contentmofeare “greater than” the string,
the following commands will be executed; if not, they will be skipped.

When comparing numbers, the actual values are compared. Leading zeros are disregarded.
Thus0011 is greater than.2When comparing characters, “greater than” is strictly accord-

ing toAscll codes. See thescil table at the end of this manual for details. Thus,

greater than ab@anda is greater than B or.Xcc attempts a numerical comparison first,

before it does a byte-for-bytescii comparison.

ifn(name) — IF SWITCH name ISNOTSET
This command is completely parallelit@xcept that it executes the commands and re-
placements following it if the switch it set (is clear), and doesn’t execute it if the
switchis set.

ifneg(name) ‘string’ — IF name IS NOT EQUAL TO string
This command is likéeq, except that the following commands and replacements are exe-
cuted ifnameis not equal to the string.

incl(name) — INCLUDE GROUP name
This command will include groupame(see thggroup(nameommand) with the
group(s) thatc s currently using. It can only be used on the right side of the wedge. This
table:
begin > use(2,5,8,4)
will have the same effect as this table:

begin > use(2,5,8)
incl(4)

This command has the opposite effecexdl(name)Note that the specified group is

20 Consistent Changes User's Guide

appended tthe endof the list of groups thatc is using.

incr(name) — INCREMENT STORE name ONE COUNT
This command causes the last character of stmeeto be incremented by one so that it
becomes the next character onABell chart. In the following example:

begin > store(zork) 'x’ incr(zork) out(zork)

the X’ in store(zork)is incremented to be a ‘y’. This command can only be used on the
right side of the wedge.

Whenevercc tries to increment a character that doesn't exist, it will create the character
“0” and then increment the “0” to “1.”

If the last character in the store is a “9,” then the next-to-last character in the store will be
incremented by one and the “9” will be changed to a zero. In the following example:

begin > store(alpha) 'A7’
incr(alpha) incr(alpha) incr(alpha)
out(alpha)

the output is “B0.” Had there only been a “7”store(alpha) rather than “A7,” thelcc
final result would have been “10.”

A common use aihcr(name)is to count the number of occurrences of a certain character
or string in a file:

X' > dup incr(total) C count every x
endfile > out(total) endfile ¢ output count

The above table will count every occurrence of x.

Theincr command preserves leading zeros in a store. For example ik stoméined
“0001,” it would contain “0002" after doinimcr(x). Note that when doing comparisons
of stores withifeq(), ifneg()andifgt(), the leading zeros will be irrelevant becaasat-
tempts a numerical comparison of stores before it does a byte-fosdwyteomparison.

It should be noted thatcr(x) is not absolutely identical tdd(x) “1”. Theincr(x) com-
mand will preserve leading zeros, tdd(x)command will not. Alsoincr(x) is allowed
on stores which contain non-numeric strings, wheaeld¢x)is not.

mod(name) ‘number — REMAINDER OF STORE name DIVIDED BY number
This command divides the value in the specified storage area by the valualwdr The
remainderfrom the division operation is storedrame replacingnames previous con-
tents. For example, the following will output “7”:

begin > store(test) '40’ endstore
mod(test) '11’
out(test)

Since 40 divided by 11 is 3 with a remainder of@discards the 3 and stores the 7 in
storage aretest If there is no remaindecc will store a 0 as the remainder. This com-
mand can only be used on the right side of the wedge.

Consistent Changes User’s Guide

mul(name) ‘number’ — MULTIPLY STORE name BY number
This command multiplies the value in the specified storage area by the valuaber
The results of the operation are storedame replacinghames previous contents. For
example, the following will output “48":

begin > store(1) '4’ endstore
mul(1) '12’
out(1)

This command can only be used on the right side of the wedge.

(name) — NAME OF STORAGE, SWITCH, GROUP, OR DEFINE
Any combination of printable characters (including numbers) can be used in the name to
designate specific switches, groups, defines or storage areas. The only exceptions are a
space and a comma. A comma is used as a separator for multiple designators. Letters are
case-sensitive. In other words; will treat store(NAME)andstore(namegs two different
stores. The naming of each is totally independent of the naming of any of the others. (eg.
nothing happens to swit@xampwhen something is stored in aeamp

Any command which takes a parenthesized string argunaenémay take more than one
string, separated by commas (i,j,k). This has the effect of repeating the command. For ex-
ample, to clear three storage arestsre(1) store(2) store(3) endstaeethe same as
store(1,2,3) endstord he only exception is thesecommand, in whiclise(1,2)makes
bothgroup(1)andgroup(2)active, whileuse(1) use(2jnakes onhgroup(2)active.

next — USE REPLACEMENT IN NEXT ENTRY
This command executes the replacement side of the next search entry. This is useful when
a number of similar match-strings need the same change. It saves table space and makes
the table easier to read. For example:

'a’ > next c change all vowels to V

‘e’ > next c¢ and add one to vowel count
' > next

'0’ > next

'u’ >V’ incr(vowel)

Commands and replacement strings may precegi®n the replacement side, but any-
thing following thenextcommand on that replacement is ignored.

See also thdefineanddo commands.

nl — NEW LINE
If used on the left side of the wedgématches arENTER>keyed in the input. If used on
the right side of the wedge, it has the effect of puttingearrEr>into the output. Note
that this function is considered a character sequence (not a command) by such commands
asifeq.

Note: You cannot put &#ENTER>between quotes. The only way to indicateaRTER>
is to usenl.

*’ — NULL MATCH or REPLACEMENT
If used on the left side of the wedge, the null match will match when nothing else will.
Note that the following restriction must be observed to avoid putting the table into a loop:
When"’ is used on the left side of the wedge, you should put eitinat(&) or anomit(v)

Consistent Changes User's Guide

command or ase(hamegommand on the right side of the wedge so progress can be
made through the input (see final(v), omit(v) anduse(namefommands). Sincé

matches when the next character in the input file doesn’t match anything, that character
must be removed to allow the possibility of matching the next character. The commands
fwd(v) andomit(v) accomplish this. Thase(hamefommand sends the program to a dif-
ferent set of matches, where the character might match. If the tablefwsbes amit com-
mand on null match, then there should be a separate entry to laoidfde For example:

2 >a
endfile > endfile c protect against null
¢ match at end of file
" >fwd(1) - c this puts a hyphen after
¢ any char other than '@’

The"' is meaningless when used on the right side of the wedge. It is sometimes used,
however, to visually signify that nothing is being output. It is not necessary, but is helpful
to clarify what is happening. (Its absence doaissave any table space.) Thus, the follow-

ing:

a" >" cgetrid of every a
"b" >"c" cchangeeverybtoc

a" > c get rid of every a
"b" >"c" cchangebtoc

omit(v) — OMIT v CHARACTERS FROM INPUT
This command causes the nextharacters that would be input, to be discarded. These
characters will not be passed through the table to be matched nor put into output or stor-
age. This command can only be used on the right side of the wedge. Althcargiot be
greater than 127, as many as 300 characters may be omitted in sequence by using more
than oneomit(v) command. Attempting to omit more than 300 characters will be regarded
as an error condition, and an appropriate message will be given.

out(name) — OUTPUT STORAGE AREA name
This command stops any storage in progress and sends the contents of storegeerea
to the output. The contents stbre(nameyemain unchanged and may be output more
than once. Unless there is anotbrecommand, all results will then go to the actual out-
put. This command can only be used on the right side of the wedge.

Theoutcommand closes any storage area that may be open, and output continues to be
routed to the actual output after the command is executed.

outs(hame) — OUTPUT STORE name EVEN WHILE STORING
This command is the same as thitcommand, except that it continues any storing al-
ready in progress. It can only be used on the right side of the wedge. This allows transfer
of material between storage areas.

For example, the following copies the contents of storageldmesatorage are, and stor-
age are& remains open after thots(1)command is executed:

Consistent Changes User’s Guide 23

store(2) outs(1)
Note that the content of storage atedoes not change.

prec(name) — MATCH IF PRECEDED BY ANY CHARACTER IN STORE name
This function will cause the string to be matched only when that strprgéedecby any
one of the characters contained in the specified storage area. This command can only be
used on the search side, between the match string and the wedge. Note that the character it-
self is not matched and will not be output by dagp command. The character is@ndi-
tion ofthe match, not part ofthe match.

This function is particularly convenient for matching strings which are required to be at

the beginning of a word; any character that may appear before a word such as a space, can
be stored in a particular storage area and usedowattinameommand. An example of
thepreccommand follows:

store(begin-word) '’ nl '<"([{’ endstore
'c’ prec(begin-word) > 'ch’

This would change anythat is preceded by a word-break character to the character se-
quencech.

More than ong@rec(namerommand (up to a maximum of 10) can be used in succession.
For exampleitest’ prec(1,2,3)will look for test preceded by something in storage &ea
preceded by something in storage &gareceded by something in storage drea

Compare this with the commandasl(hame), fol(namegandany(name)

read — READ FROM KEYBOARD
This command reads a line from the keyboard into the current store if storing, or directly
into output. It can only be used on the right side of the wentgstops reading characters
from the keyboard when th&NTER>key is pressed. The&ENTER>is simply a signal to
theread command to stop reading characters from the keyboardetERr>does not ac-
tually go to the storage area or output.

Prior to issuing aead command, it would be advisable to usewhi#e command to write
a message on the screen so that the person at the keyboard would realize that the computer
has paused and is waiting for input from the keyboard.

repeat — REPEAT FROM begin
This command goes back to the neabesfin This command can only be used on the
right side of the wedge. For example:

Consistent Changes User's Guide

¢ This table fills short lines with the letter x
¢ until all lines have sixty characters
begin > caseless
store(char) * abcdefghijkimnopgrstuvwxyz,.?V
store(count) '0’ endstore

any(char) > dup incr(count)
nl > ifgt(count) '59’

begin
xx ERROR count 60 or greater *' nl

end

else

begin

incr(count) ¢ Increment count

X’ ¢ and output an x

ifneq(count) ‘60’ c If count not sixty,
repeat C Qo back to begin

endif

store(count) '0’ endstore

nl ¢ restore count and output newline
end
endif

Be careful when using thhrepeatcommand. In this example we checked first to make sure
that the count was less than 60 before startingegpeatcommand. If, for some reason the
count was 60 or greater when we encountered a newline, the program would hang up in an
endless loop. Always check whatever is being used to controdpeatcommand to

make sure that it is set properly before beginningapeatloop.

It may be easier to rurc twice (pass the data through two different change tables) than
make a complex table to do everything in just one pass.

set(hname) — SET SWITCH name
This command sets a switch or flag which you can check (ifstmgnmands) for condi-
tional execution of table entries. It can only be used on the right side of the wedge. You
may use up to 127 switches, distinguishing them by using different names. Whatever num-
ber or name you use when ysetit for the first time is what you must use when you sub-
sequentlyclear or test the flag.

A switch can be “turned off” by using tlbear command. All switches are initially clear
(not set).

store(name) — STORE IN STORAGE AREA name
This command re-routes the output to an internal storage area. It can only be used on the
right side of the wedge. You may have up to 127 storage areas, distinguishing them by us-
ing different names. Whatever you call the storage area stdhe{namefommand is
what you must use when you subsequently output its contents (sggoérel out, and
outscommand as well as descriptionnafmeg.

Any data previously stored in the specified area is discarded when a new request to store
is given, and any storage being done in another area is stopped.

Storage areas can only be cleared bioeecommand followed immediately by an

Consistent Changes User’s Guide 25

endstoreout, or anothestorecommand.

Note that if multiple stores are requested at once, the effect will be to erase and close each
until the last, which will be cleared, but remain open to be stored into. The following three
lines are equivalent to each other:

X' > store(1,2,3)
X’ > store(1) store(2) store(3)
X' > store(1) endstore store(2) endstore store(3)

sub(name) ‘number’ — SUBTRACT number FROM STORE name
This command subtracts the value specifieddoypberfrom the value in the storage area
name It can only be used on the right side of the wedge diffexenceis stored imame
replacingnames previous contents. For example, the following will output “3”:

begin > store(value) '17’ endstore
sub(value) '14’
out(value)

use(name) — USE CHANGES IN GROUP name
This command specifies which groups of changes are currently available to be matched
(see thgroup(namexommand). Any previougse(hameommand is cancelled. This
command can only be used on the right side of the wedgse([X)is specified, then the
changes igroup(y)are ignored. For example:

group(def)

W' > dup use(word) c change a to aa following
'‘a’ >'aa’ ¢ a\d but not following
group(word) ¢ a\w marker

\d’ > dup use(def)

Several groups can be made available for searétitige same timd=or example,
use(1,6,8,4rauses groupk, 6, 8and4 to be searched in that order. Although up to 127
groups can exist in a table, you can use no more than 25 of them at one time. The groups
will be searched in the order they are specified irudesommand. Theise(namegom-

mands do not take effect until thad of the entrin which they were specified.

wd(name) — MATCH ONLY IF WORD
This command causes a string to be considered matched only if it is both preceded and fol-
lowed by any character contained in storage aaegae Note that the preceding and fol-
lowing characters aneot considered part of the match and would not be outputdoypa
command. For example, the following table:

begin > store(punct) nl’ .,"()’ endstore
‘and’ wd(punct) > 'also’

will change any of the following:

and and. and, and" and(and) and<ENTER>
and .and ,and "and (and)and <ENTER>and

This command is used only on thearch sidef the table, jusbefore the wedge

26 Consistent Changes User's Guide

Note: When storing the word boundary punctuation, do not include any diacritics. Also
keep in mind that there is a small gain in speed if the most frequently used characters are
listed first.

write ‘string’ — WRITE string TO SCREEN
This command writes on the screen the contents of the string. A string is any combination
of literal stringshl commands, anadscii characters (such &€ for backspace). This com-
mand can only be used on the right side of the wedge. The string is terminated by the fol-
lowing command or next search entry. It may contésrand multiple lines. For example:

‘cat’ > write nl 'cat found’ nl
'bird’ > write nl 'feathered friend found’ nl dup

When‘cat’ is matched the program writes the messeaiefound’ on the screen. The

screen message is terminated by the next search entry.'Nifidkris matched the pro-

gram writes the messatjeathered friend foundon the screen. The screen message is ter-
minated by thelupcommand antbird’ is written to the output, but not to the screen.

wrstore(name) — WRITE STORAGE AREA name TO SCREEN
This command writes on the screen the contents of séone It can only be used on the
right side of the wedge. Combining the example ungge with the example under
incr(name) if a count of every x was kept in storage areant the total could be printed
to the screen as follows:

endfile > write 'There were’

wrstore(count) write " occurrences of x" nl
endfile

3.5 1/O Options
When you typecc at thepos prompt,cc will ask for the name of your:

Changes file?

After you provide the name of your change table and pesER>, cC will ask for the
name of your:

Output file?
It is in response to these questions that thesmptions may be used:

/b BACKUP TO PREVIOUS QUESTION
This command, in response to any question other than “Next input,” will cause the pro-
gram to re-ask the previous question.

/c COMPILE TABLE
This option will causec to compile the table rather than to run the table. It is used after
your filename in response to the question, “Changes file?”

Changes file? mytable.cct/c

If you use the /c optiorgc will not ask you for an input file name or an output file name.
It will instead ask you for the name it should give to your compiled table that it is about to
create:

Consistent Changes User’s Guide 27

Compiled table file?

A compiled table is very compact, usually only a few blocks. This can save table loading
time for frequently run tables. The recommended file extension for a compiled table is
.CCC.

/d DEBUG
This option gives the number of changes and characters in the table, and gives a display of
text before and after the changes.

NOTE: This mode will not display properly unless the screen drarsi.sysis invoked in
your CONFIG.SYSat boot up.

The debug option is used after the filename in response to the question, “Changes file?”

Changes file? mytable.cct/d

The debug option shows the content of the current storage area, any switches on, and the
numbers of the current groups.

When you use the debug option you will see a listing of all the stores, switches, and
groups used in your change table, before the request for the output file. You will see both
a number and a name for each. The number is significant for when you are @mning
without the debug option, because all error messages will reference items by number
rather than name. The only way to find which name in your table is referenced by a num-
ber is to rurcc with the debug option.

After you have entered your output and input filenag@will begin running in the de-
bug modecc will stop at the first match and show you the following:
Store namecontains: [contents of current store before match

A line of text showing 35 characters of the “output” text and 35 characters of the
“input” text with the matched characters in reverse video

A line of text showing the data after the entire right side of the match is completed
Active groups: name, name, name . .(active groups after match is completed)

Switches set:name, name, name . (switches that are set after match is com-
pleted)

Store namecontains: [contents of current store after the match is comgdleted
A store is shown only if it is currently being stored into. Other stores not shown may also
contain data.

In the display of the store contents and the match lineclaracter will be displayed as
character that looks like a backwards F. The symbol for “end of file” will be a solid
block. Other control characters in the data can mess up the screen display.

If more characters are in a store than will fit on one line of the screen, an automatic line
wrap is performed.

A null match can be recognized becanseharacters are in reverse video in the match
line.

28

Consistent Changes User's Guide

Switches and groups are shown only once because they cannot change between the end of
one entry and the beginning of the next. Store contents are shown twice because they can
change between matches.

There is no way to display what happens within a replacement, except by seeing the evi-
dence of before and after.

The debug feature afc starts up in a ‘single-step’ mode. Simply press a key to go on to
the next step. If you want to run steps continuously, pESSAPE> Pressing any key
will stop the debugger and resume single step mode.

/o NEW OUTPUT FILE
If a /o is typednstead ofa file name at the “Next Input” question, the program reprompts
for new input and output files after finishing and closing the file currently being output.
The same change table will remain in effect, but will be restarted frobethestate-
ment, as if it had just been loaded. This allows running various files through the same
change table without reloading the table every time.

/r RERUN PROGRAM
If a /r is typednstead ofa file name at the “Next Input” question, the program will return
to the beginning of the program, after finishing and closing the file being output. This al-
lows the user to use various change tables without having to returrotoshbeompt.

It WAIT FOR INPUT
You should never need to use this option. It is outdated and documented here only for the
sake of completeness. If a /t is typed after the file name at the “Next Input” question, the
program will type the message:

Waiting for filename: Type <RETURN> to continue?
and wait for an <ENTERbeforelooking up the file.

/w WAIT FOR SYSTEM
You should never need to use this option. It is outdated and documented here only for the
sake of completeness. If a /w is typed after the table name at the “Changes file” question,
the program will indicate when the disk may be removed and when to restore it.

3.6 Running CC from the Command Line
When you typecc at theDos prompt,cc asks you a series of questions, such as Changes
file?, Output file?, Input file?, etc. You can avoid having to answer all these questions by
including your answers when you type. Note that the following two examples will pro-
vide the same results:

Consistent Changes User’s Guide

C:\>cc

Consistent Changes 7.4, 15-May-90 Copyright 1987-1990 SIL
Inc.

Changes file? test.cct

Output file? test.out

Input file? test.txt

Next input file (<KRETURN> if no more)? <ENTER>
C:\>

C:\>cc -t test.cct -0 test.out test.txt
Consistent Changes 7.4 15-May-90 Copyright
1987-1990 SIL Inc.

C:\>

In the second example, tHandicates that the table name will follow amdndicates that
the output file name will follow. These must be typed in this order, the samecarder
would ask you for the file names if you were not working from the command line. In
place of the input file name you can usé @ indicate a file containing a list of input file
names. There will only be one output file, however. i®eeptions for more information
on commands that can be entered along with the file names.

The only thing to remember is that the output file name is precedeebptha change ta-
ble is preceded by-& and the input file name doesn'’t get preceded by anything. In fact,
you don’t even have to remember this! If you tga® at thepos prompt,cc will display

a list of which “-" goes with which file name!

Summary of CC Command Line Options
-t Change Table name;abmpiling this is the name of thencompiledile; if runninga
change table, it can be eitheramcompiled or compiledhange table

-0 Output file or device

-i Name of file containing a list of input files

This file can be created with tlse. Editor or any other word processor provided the
output is unformatted (plaisscl). In the list each file name is followed by a
<RETURN>as in this example:

matthew.scr
mark.scr
luke.scr
john.scr
acts.scr

-m Ask “Next input” question; when running from tbemmand lineThe default is to
not askthe question when running from tbemmand lineWhen running witlcc
prompts the program will ask for “Next input” after processing each file.

-s Compiled table name; used only when compiling

29

Consistent Changes User's Guide

Chapter 4 Advanced Features

4.1 Storage Commands
There are five commands directly connected with the storage featurecaf phegram:

store(name)
append(name)
endstore
out(name)
outs(name)

Some secondary commands which use storage areas, but which are not described in this

section, are:
add(name) ifgt(name)
any(name) incl(name)
cont(name) incr(name)
div(name) mul(name)
excl(name) prec(name)
fol(name) sub(name)
ifeq(name) wd(name)
ifneq(name) wrstore(name)

More information on these can be found in section 3.4

The expressiofname)represents any logical name you choose. In older versi@ts of

only numbers could be used to identify stores and groups, etc. The logical name feature
has been included since version 7.2B. A logical hame can consist of alphabetic characters
or numbers, and cannot include spaces, commas or a right parenthesis. The names can be
any length. The names are case sensitivsioe(cat)andstore(Cat)would refer to dif-

ferent stores. There is a program limit of 127 different stores. These rules also apply to the
names for groups, switches, and defines.

What store(namepoes

When thestore(namefommand is encountered, the storage area assigned to that name is
first cleaned out —any data stored there previous to encounterisptefhamejs dis-

carded, without warning. Before using #tere(hamefommand, be sure you do not need
anything that may be in the storage area. Now rather than send data to the normal output,
the data is sent to the temporay store area. Data will continue to be stored in this area until
the program encounters another command that affects stagmen(l endstoreout, or

outs.

If storage had been requested to one @ramel) but it is now requested to a different
area(name?2) the output is diverted to the second area and no longer goes into the first.
Only one storage area at a time accepts data.

What append(namelpoes

Theappend(name}ommand is quite similar to tlstore(nameommand, except the
store(namefommand causes the previous contents of(ageae)to bediscarded The
append(namegdommand retains the previous contents and inserts the new data into the
storage area following any data that already was in that storage area.

What endstoreDoes
When arendstorecommand is encountered, any storage that was going on is stopped and

Consistent Changes User’s Guide 31

output is directed to the normal output, as it does when storage is not requested. Data that
is currently in storage will remain there until the program encounters a comstargl (
appendout, oroutg naming that area. Note that no name is required for the endstore com-
mand.

By the way, if you want to deliberately clear out the contents of a storage area, the combi-
nation of commandstore(name) endstomeill clear it out without affecting output at all.

What out(name)Does

Whenout(hame)s encountered, two things happen. First, if storage is being done, it is
stopped as if aBndstorehad been encountered. Second, the contents of storage area
(name)are sent to the output file. Note that no matches are performed; the contents of the
storage area do not pass through the change table. Also note that storfumnaeiia

not cleared out; it still contains what it contained beforethténame)vas encountered.
Storage aretname)may be output any number of times. If there is nothing in the storage
area, nothing is output.

What outs(namepoes

Theouts(namefommand is very similar to tleut(hame)ommand except the
outs(namefommand does not stop storing. This provides a way to transfer data from one
storage area to another. This applies whether storing is being done vetbréfeame)
command or with thappend(hamejommand. For example, to copy the contents of
store(first)to store(second)use the commarstore(second) outs(first) endstore

To put the contents of storage aréest, second andthird all together into arefour:

store(four) outs(first) outs(second) outs(third) endstore
or

store(four) outs(first,second,third) endstore

An Example of Storage

The storage feature has a number of uses. Frequently it is used when the user wants the
output in a different order than the input order. The following example illustrates the use
of storage in a simple dictionary reversal.

Let's suppose that you had a huge text file that was a bilingual dictionary that a Spanish
speaker would use to find the meaning of English words. A text file for such a dictionary
might be keyed in with each line preceded by a Standard Format marker as follows:

\w word in English

\p part of speech in Spanish

\d definition in Spanish

\i illustrative sentence in English

\t translation of illustrative sentence in Spanish

Let's suppose now that you wanted a dictionary that would go the other way, to allow an
English speaker to find the meaning of Spanish words. We could use the first dictionary as
a basis for our new dictionary, creating@table to rearrange things for us.

Consistent Changes User's Guide

Sample of Input (before): Desired Output (after):

\w cat \w gato

\pn \pn

\d gato \d cat

\i The cat is black. \i El gato es negro.
\t El gato es negro. \t The cat is black.

Note that the word and definition “changed places,” as did the illustrative sentence and its
translation. (For the moment, we will not deal with the fact that different abbreviations
would probably be used for the part of speech —we are interested in the process of the re-
versal.) The following table is what is heeded for a reversal.

"\w " > out(def,part,word,trans,ill)
C output reversed entry
store(trans, ill,def,part,word)
c clear storage areas
¢ and store entry word
“\d" ¢ mark word as definition

"\p " > store(part) \p " c keep as part of speech
"\d " > store(def) "w " ¢ mark def. as entry word
“\i " > store(ill) "t" c markillus. as

c translation
"\t " > store(trans) "\i " c translation as

¢ illustration.

endfile > out(def,part,word,trans,ill)
endfile c output last entry

What does this say? It is easier to understand if we look at it in pieces.

Conceptually, the first thing to do is to store everything that comes in, in different storage
areas. If you look closely, you will see the following in the above table, among other

things.

"\w " > store(word) ¢ store entry word

"\p " > store(part) c store part of speech
"\d " > store(def) ¢ store definition

"\i " > store(ill) c store illustrative sentence
"\t " > store(trans) c store translation

The data comes in and thweis found. Storage ardword) is requested. Data that follows
passes through the table unchanged. However, it does not go to the output file; it is sent
into storage are@vord). When thép comes through, it matches and storage guad) is
requested. Data that follows is sent into storage(pae8), and so forth.

Soon aw is found again, and that is where some of the other commands in the table really
take effect. Let’s look more closely at theentry, as it really is in the table.

Consistent Changes User’s Guide 33

"\w " > out(def,part,word,trans,ill)
c output reversed entry
store(trans, ill,def,part,word)
c clear storage areas
¢ and store entry word
"\d " ¢ mark word as definition

The first line of it:
"\w " > out(def,part,word,trans,ill)
C output reversed entry

says to stop any storing that may be being done, and to output the data in the storage areas
in the orderdef, part, word, trans, ill . As you may recall, the definition was stored in area

(def). That is output first. The part of speech is in storage(pee) and it is output sec-

ond. The main entry word is in storage award) and it is output third. And so forth.
Comparing this to the desired output, it is indeed what is wanted. The next line:

store(trans,ill,def,part,word) c clear storage areas
¢ and store entry word

is a bit more obscure. It is perhaps easier if we look at an equivalent set of commands:

store(trans) store(ill) store(def) store(part) store(word)

This has exactly the same effecstare(trans,ill,def,part,word)Requesting storage into

an area causes its current contents to be discarded. If another storage area is immediately
requested, nothing is stored in the first. Thus, the commstane|(trans)says, “ stop stor-

ing any place else, erase anything that might be in storagérares) and begin storing
something new there.” This is immediately followedslyre(ill) which says, “stop stor-

ing any place else, erase anything that might be in storagélBraad begin storing

something new there.” What happened? The effect was to erase anything in storage area
(trans)without putting anything new there. Similarly, since the comnsamick (def)fol-

lows immediately, storage aréll) has been erased and nothing new put there. This con-
tinues until at last thstore(word)command is encountered. By the way, we could have
said:

store(trans) endstore
store(ill) endstore
store(def) endstore
store(part) endstore
store(word) endstore
store(word)

This would have had the same effecs@se(trans,ill,def,part,word)

Since no other store or endstore command followsttre(word)command, something
actually can be stored in area (word). And, in fact, that happens immediately. The line:

"\d" ¢ mark word as definition

will be stored in areéword).

34

Consistent Changes User's Guide

In general, this is what is happening:

"> "d "
"p "> "p
d "> w
it >\
N>

If you compare the Sample of Input with the Desired Output, you will notice that the
markers change. What was marked as the main entry word is now marked as the defini-
tion, and vice versa. This type of changing is one of the most basic features of the Consis-
tent Change program. A sequence of characters is matched and is replaced by another
sequence of characters.

Putting the marker changes together with the storage, the table has:

"\w " > store(word) "\d " ¢ mark word as definition
"\p " > store(part) "\p" c keep as part of speech
"\d " > store(def) "w" ¢ mark def. as entry word
"\i " >store(ill) "\t" c markillus. as

c translation
"\t " > store(trans) "\i " ¢ mark translation as

¢ illustration

The entry word “cat” goes into storage avaad. The new marker “\d” should go there

too —before the word “cat” does— just as the old marker “\w” was before the word
“cat.” Thus, the new marker should be the first thing stored in the storage area. In order
for \d to be stored, it must follow tletorecommand, not precede it. Because the \d fol-
lows thestore(word) it is stored immediately in ar@eord. Then the end of the command

is encountered. The rest of the data between the “\w” and the “\p cat” is not changed be-
cause it matches nothing in the table. It would have gone to the output file, but because
storage has been requested, it goes into storageareéa—where the \d already is. When
the “\p” is encountered, the change table calls for storage to be switchedpararea

Then the “\p” is “changed” to “\p,” and sent to storage @aaa The same process is
followed for the other parts of the data.

How can we tell when we have stored all there is of a given entry and that we are starting
a new word in the dictionary? —when we get to the beginning of the next entry. That is
why theout command is at the beginning of the “\w” entry. Another way to know that we
have just finished storing a given entry is when we reach the end of the input file. In the
following part of the table, thendfileon the left of the wedge means “Do this when we

get to the end of the input file:”

endfile > out(def,part,word,trans,ill) ¢ output last
c entry
endfile
The commanendfilemeans: at the very end of the data, when everything has been
looked at, but before the program stops, to output the last reversed entry, just like the
“\W” entry in the table does —but there won't be another “\w” coming. Notice that after
the entry is output, there is anotleedfilecommand. That is the only way to tell the pro-
gram that it is done. Thendfileon the left of the wedge catches the end of file mark in
the data. Thendfileon the right side tells the program to send an end of file mark to the
output file, close the output file, stop processing and return makerompt. If we don’t
send it back out, the output file will never be closed and the program will never end!

Consistent Changes User’s Guide 35

There are a few other comments that need to be made about the table. For convenience it
is reproduced below:

"\w " > out(def,part,word,trans,ill)
C output reversed entry
store(trans,ill,def,part,word)
c clear storage areas
¢ and store entry word
"“\d" ¢ mark word as definition
"\p " > store(part) "\p " c keep as part of speech
"\d " > store(def) "\w " ¢ mark def. as entry word
"\i " > store(ill) "t" cmarkillus. as
c translation
"\t " > store(trans) "\i " ¢ mark translation as
¢ illustration
endfile > out(def,part,word,trans,ill)
endfile C output last entry

When the first “\w” is encountered, the program executesuk@ef,part,word,trans,ill)
command. This is no problem, because when nothing is stored in a storage area, nothing is
output.

There is no problem if, for example, some entries do not have illustrative sentences or a
part of speech. Why? At the beginning of each new entry, all the storage areas are com-
pletely erased. Nothing is stored in an area unless the marker for that area is found in the
data. Thus, the following input would produce the following output:

input output
\w cat \w gato

\pn \pn

\d gato \d cat

\i The cat is black. \i El gato es negro.
\t El gato es negro. \t The cat is black.
\w dog \w perro

\pn \pn

\d perro \d dog

\w mouse \w raton

\pn \pn

\d raton \d mouse

If we had not used th&tore(trans,ill,def,part,wordtommand to erase the storage areas,

the illustrative sentences for the “\w cat” entry would also have been printed out with the
“dog/perro” entry and following entries, until a new set of illustrative sentences in the in-
put was encountered. Whenever you see such results, you can be sure that some storage
area has not been cleared.

To get rid of blank lines before entries, add the following:

nl "\w" > next

just before the “\w” entry as it is. To output blank lines, modify the “\d” entry to read:

Consistent Changes User's Guide

"\d" > store(def) nl "\w"
This will put a blank line in front of the very first record, but that should not be a problem.
Another way of dealing with blank lines is described in section 4.2.

4.2 The Back Command
The commandback(v)pulls back the previousumberof characters which were stored or
output and treats them as if they were new input.

One of the main difficulties in writing a general change table is trying to anticipate all the
irregular typing sequences — both legitimate variations as well as “errors” — which oc-
cur in any manuscript.

An often-encountered problem is that of extra spacesNrER>s. These occur in various
combinations and in varying numbers. Often in a printout, it is desirable that a sequence
of spaces be treated like one. (There are exceptions, of course.) Without the back com-
mand there is no way to effectively do so.

The following command line causes any sequence of spaces to become one space:
nmon > nn baCk(l)

This says, “if there are two spaces, put out one instead; then put that one character back
into the input so that it is available to be matched again in the table.” Keep in mind that
the “1” in back(1)does not refer to a storage area, but to the quantity of characters to be
moved back. See section 3.4 for more information on the back command.

If the space is followed by another space —ie, if there were originally three spaces in a
row— then the space that was output and backed over, plus the space following, will be a
pair of spaces which will match the entry above and be reduced to one space. This will
continue for however many spaces occur together. Finally just one space will be left.

Another place stray spaces occur is at the ends of lines. The automatic wrap feature of
various edit programs removes such spaces, but people still manage to get a few. The fol-
lowing command will remove a space that precede€®ner>. (Multiple spaces preced-

ing the<eNTER>will have been reduced to one by the command described earlier.)

""" nl > nl back(1)

This says, “if a space immediately preceding a new line is matched, output a new line;
then back up so the new line is treated like input and is available to be matched again in
the table.”

Yet another source of multiple spaces in printouts is blank lines —mulipieER>s. The
following command takes care of blank lines in the same way multiple spaces are taken
care of.

nl nl > nl back(1)

And the following command removes spaces from the beginnings of lines, just as a pre-
vious one removed them from the ends:

Consistent Changes User’s Guide 37

nl " " > nl back(1)

Together these four force any sequence of spaces to be treated like a single space, and any
combination of spaces arRENTER:S to be treated like a SINGHENTER>.

But that is only one aspect of the difficulties needing to be dealt with. It is not uncommon
to find text files that include Standard Format markers. These markers most commonly
take the form of a “\" followed by a lower case character and then a space character.
Markers are put in by the person editing the file so that the file can be manipulated later
by utility programs (such ax). People are encouraged to put the Standard Format mark-
ers at the left margin because it makes proofing and editing easier. But sometimes they
don't. It would be a simple matter to write a change table that put each “\" on a new line.
It would be as follows:

"> nl

That would work fine, but what if the “\" was part of something else that we wanted to
match (like a “\w,” for instance)? The “\" has already gone sailing past and been output.
Theback(v)command can help us because it can take characters which have gone “sail-
ing past” the table and put then back into the input file as if they’'ve never come through
the table yet.

In the following change table, the first line will catch each “\" that is preceded snan
TER> (as Standard Markers ought to be) so that they won't be changed. The second and
third lines will catch each “\” that isn’t preceded by<@NTER> and put aRENTER>In

front of it. There could be a potential problem with the third line, however.

nl"\">dup c¢ Don'tadd nlto"\"if not needed!
"\" > nl"\" back(2)
"“\" > nl"\" back(2) c This line is dangerous

The danger of the third line is that the program could be caught in a loop. Once the “\" is
matched, arRENTER>is put in front of it, and it is sent through the table again. It would
again match at the backslash if the first line of the table had not been included, or if we
had saidback(l)instead oback(2) An <eNTER>would again be put in front of it and it
would be sent through the table again... and again... and again...

How can such a thing be prevented? In this case we have included the first line and
back(2)so there will be no problem with the program getting caught in a loop. This is the
most obvious way, turning what is to be backed over into something completely different
so that no piece of it will match at the same place again. But that isn’t always desirable.

The second way is to be sure to include something to catch the repetitions, such as a
switch. (See section 4.4.) For example, the line could have been:

"\" > ifn(checked) set(checked) nl "\" back(2)
else "\" clear(checked)
endif

It would catch itself when it attempted to send the same backslash through for a second
time, thus preventing the loop.

Another solution, sometimes a better one, is to catch the output of that dangerous entry

38

4.3

Consistent Changes User's Guide

(that might cause the program to go into a loop) and do something else with it. The lines:

nl"\" > dup
"“\" > nl "**ERROR***" n| "\"

can be placed in the table. If a “\" is not at the beginning of a line, the second entry would
catch it, and draw attention to it in the output file for later correction, rather than try to fix
it, back it into the input file, and match it again.

Groups

There are two commands associated with the group function. They are:
group(name)
use(hame)

These commands allow certain entries in the table to be available to be matched while oth-
ers are not.

What group(nameDoes

This command is not used as part of a “search” > “replace” entry. Rather, it is used on a
line all by itself to mark the beginning of a “group” of changes. The changes in this group
can be executed as if they were the only changes in the table. The end of the group is
marked by either the end of the table, or anagih@eup command.

What use(hamepoes

Whenever more than one group is used, each must be appropriately designageslipy a
command. Unless specified otherwise, the program will stgromp(1) (or in the first

group whose namigeginswith a ‘1'!). If numbers are not being used for group names, the
program will start in the first group in the table. To begin in some other placeseghe
command must appear in theginentry. For example:

begin > use(2)

Although the above example specifigbup(2)as the place to start, any group in the ta-
ble could have been specified.

Theuse(namegfommand can also be used to make a different group or set of groups ac-
tive during processing. Theameargument tell€c which group or groups of changes to
use from that point on, unless it finds anotih@command. You should puse(name)

only on the right side of the wedge. Note that wberencounters a use commandirit

ishes the entryhich contains ituse(nameyloes not constitute an exit from the entry.

Example of thegroupand usecommands

In a bilingual dictionary, one might wish to make certain changes in the orthography of
one language without doing anything to the other language. Let’s suppose that you had a
huge text file that was a bilingual dictionary, one that a Spanish speaker would use to find
the meaning of English words. A text file for such a dictionary might be keyed in with
each line preceded by a Standard Format marker as follows:

Consistent Changes User’s Guide 39

\w word in English

\p part of speech in Spanish

\d definition in Spanish

\q qualifying comment in Spanish

\i illustrative sentence in English

\t translation of illustrative sentence in Spanish

And suppose the orthography change is to be in the English language. Such a change
would affect the \w and \i parts of the entry, but not the \p, \d, \q, or \t parts.

There are two ways, at least, to approach this problem. One way is to use switches. (See
Section 4.4.) Another is to use groups. Consider the following table:

¢ Do orthography change for the \w and \i fields

begin > caseless

group(1)

W' > dup use(2) c¢ Go to group two, where the
\i’>dupuse(2) c¢ change occurs

group(2)

kw’ > qu’ ¢ Change kw to qu for \w and \i
\p'>dupuse(l) c Don't change these fields, go
\d’ >dupuse(l) c backto group one, where
\q’ >dupuse(l) c nothing happens to kw.

\t’ > dup use(1)

What does this table say? First the line:
group(1)

identifies the beginning of a group. It tells the program that the following changes belong
to a group calledl). Unless it is told otherwise, the program will always begin using the
changes in group one when the program begins. The lines:

W’ > dup use(2) c Go to group two, where the
\i’ > dup use(2) c change occurs

tell the program that whenever it sees a \w omdlie it is inside group(1)that it should
duplicate what it has matchedupp command) and go use the changes that are in group
two. The next line:

group(2)

identifies the beginning of the second group of changes. Inside this group, that is, follow-
ing the group command, are the changes, such as:

kw' > 'qu’ ¢ Change kw to qu for \w and \i

These are the orthography changes that we want performed on the data in the \w and \i
fields. That is why those markers requegislip(2) They are not all that is igroup(2)
however. The lines:

40

4.4

Consistent Changes User's Guide

\p’ >dup use(l) c Don’t change these fields, go
\d’>dupuse(l) c backto group one, where
\q’ >dupuse(l) c nothing happens to kw.

At > dup use(1)

catch all the other markers in the dictionary. They send them back to the first group.
There, the data following them passes to the output file without any change in “kw” or
“Kw”, if that combination of letters happens to occur.

Switches

4.4.1 Introduction

The concept behind using switches is one that is familiar to everyone. The problem is that
the concept is not usually formalized.

Consider the following statements:

— If it doesn’t rain this morning, I'll water the lawn this evening.

— If we have hamburgers this noon, I'll make pork chops for supper; otherwise I'll fix
hamburgers.

— If the gate is left open, the dog will run away.
— If we don’t get some gas now, we’ll run out.

— If George forgets to pick up the groceries on his way home from work, we’ll have pork
and beans for supper.

Each of these embodies the concept of a switch. If something has or has not happened:
— itrains

— we eat hamburgers

the gate is left open

— we buy gas

George remembers the groceries

certain consequences follow or do not follow:
— | water the lawn

— we have pork chops

— the dog runs away

— we run out of gas

— we eat pork and beans

The “something” that leads to the consequences isahéition Sometimes the conse-
quences follow if the condition occurs:

— If we have hamburgers this noon, I'll make pork chops for supper...

Sometimes the consequences follow if the condition oioEsccur:

— If it doesn’t rain this morning, I'll water the lawn this evening.

Consistent Changes User’s Guide 41

Of coursesomethinchappens whether the condition is met or not. If nothing else the con-
sequences fail to occur:

— | don't water the lawn

— The dog doesn’t run away

— We don't run out of gas

Sometimes there are alternate consequences:
— | fix hamburgers
— We eat something other than pork and beans

The five statements above can be semi-formalized as follows.
If not (rain in the morning) | will water the lawn this evening.

If (we have hamburgers at noon) we will have pork chops for supper
else we will have hamburgers for supper.

If (the gate is left open) the dog will run away.
If not (fill the car with gas) we will run out of gas.

If not (George remembers the groceries) we will have pork and beans for supper.

In each case, the parenthesized condition can be regardsdiashaSwitches have only
two states: these are calledor off (or true or false or setor clear).

A switch by itself doesn’t necessarily do anything. The lack of morning rain does not
always result in the lawn being watered. | have to decide that circumstances warrant the
lawn being watered. Once that decision is made, then | look about for any conditions that
would affect my decision: If it rains, | won't need to water lawn. Later, | check that condi-
tion (or switch). Did it happen? (Is the switch set?) Then | proceed accordingly.

The nature of a switch, and its particular value, is that it allows something that happened
(or didn’t happen) in the past to be taken into account for a decision in the present.

For people, remembering the past is no amazing feat; for a computer, remembering the
past must be done deliberately. Hence, computers use formal switches. Actually, all of the
computer’'s “memory” is an elaborate array of switches controlled by other switches

which are controlled by a program which is a bunch of switches controlled by the data—
which sets and clears switches. Fortunately, we need not worry about all these levels upon
levels of switch setting and testing. But it is nice to be able to caanadlevels of it.

This allows us to do innovative things with the data.

4.4.2 What the Commands Do
What types of switches are available in titeprogram? How are they used?

There are several commands connected with the switch featureaaf pinegram:

42

Consistent Changes User's Guide

set(name)
clear(name)
if(hame)
ifn(name)
endif

else

The (name) represents the name of the switch. There can be up to 127 of these in a single
table. Other commands may use the same names, but there is no relationship between the
names for switches and any other names. Note that the following commands:

ifeq(name) 'string’
ifneq(name) 'string’
ifgt(name) 'string’

use the same concept of a switch, buttdimes refer tostorage areasnot to switch
names. These commands are not described here, but in section 3.4. Do not confuse them
with the first list of commands, some of which look very similar.

Keep in mind as you read that the tesag on, or truare used synonymously with one
another. The termdear, off, or falseare also used synonymously with one another.

What set(nameyfloes

The commandet(namefauses switcfname)to be in theon or true state. Switclfname)
will remain set until explicitly cleared. Hence it can be used for reference later as a re-
minder or signal of what has gone before. The switch is cancelled blg#nghame)om-
mand. When the table first starts running, all switches are clear, or off.

What clear(hame)does.

The commandalear(name)auses switcfhame)to be in theoff or falsestate. Switch
(name)will remainoff until explicitly set. When thec program is started and before any
table entries are executed, all switches are cleared, or turned off.

What if(name)does

The commandf(name)checks to see if switgmame)is set. If it is set, the commands fol-
lowing theif are executed. If it is not set, the commands followindftaee not executed
(are skipped). This allows commands to be executed only if a certain condition exists.

What ifn(name)does

The commandfn(name}—which is read “if no{name}j — checks to see if switch
(name)is not set. If it imot set, the commands following tifa ARE executed. If the
switchis set, the commands following tife areskiPPED This allows commands to be
executed only if a certain condition does not exist.

What endifdoes

The commanendifputs a boundary on tlileor ifn command. If the switch was such that
the commands following th& orifn were beingkipped execution of commands will be-
gin again at thendifregardless of the setting of any previous switches. (Of course, an-
otherif orifn may be encountered immediately afterehdifwhich would again take into
account switch settings.) If the commands followingitlue ifn are being executed, the
endifhas no effect; execution continues.

Consistent Changes User’s Guide 43

What elsedoes

If switch conditions are such that commands following the most réaamtn are being
executed, thelsecommand causes the commands following itself to be skipped. If the
commands following thé or ifn are being skipped, thidsecommand causes the com-
mands following itself to be executed.

In the following example:
"a" > if(test) "a" else "b" endif

If switch (test)is set,a will go to the output. If switclftest)is not setp will go to the out-
put. The same result could have been achieved by:

"a" > if(test) "a" endif

ifn(test) "b" endif

An Example Using Switches

For example, in a bilingual dictionary, one might wish to make certain changes in the or-
thography of one language without doing anything to the other language. Let’s suppose

that you had a huge text file that was a bilingual dictionary that a Spanish speaker would
use to find the meaning of English words. A text file for such a dictionary might be keyed
in with each line preceded by a Standard Format marker as follows:

\w word in English

\p part of speech in Spanish

\d definition in Spanish

\q qualifying comment in Spanish

\i illustrative sentence in English

\t translation of illustrative sentence in Spanish

And suppose the orthography change is to be in the English language. Such a change
would affect the \w and \i parts of the entry, but not the \p, \d, \q, or \t parts.

There are two ways, at least, to approach this problem. One way is to use switches. An-
other is to use groups (see section 4.3). Consider the following table:

¢ Do orthography change
begin > caseless

W' > dup set(qu) ¢ Set switch (qu) to change
\i’>dupset(qu) c¢ kwtoqu

\p ' > dup clear(qu) c Don't change these fields.
\d’ > dup clear(qu) c¢ Clear switch (qu) so

\q’ > dup clear(qu) c¢ nothing happens to kw.
\t ' > dup clear(qu)

'’kw' > if(qu) 'qu’ ¢ Change kw to qu for \w and \i

else dup
endif

What does this table say? First the line:

44

4.5

Consistent Changes User's Guide

begin > caseless

tells the program to ignore case when it matches. For this table, it means that “kw” and
“Kw” will be changed with the same match. Unless it is told otherwise, the program will
always consider case when it matches. The lines:

\w’ > dup set(qu) ¢ Set switch (qu) to change
\i'>dupset(qu) c¢ kwtoqu

tell the program that whenever it sees a \w or a \i, it should duplicate what it has matched
(dupcommand) and that it should set swifgh). The next lines:

\p ' > dup clear(qu) c Don't change these fields.
\d’ > dup clear(qu) c Clear switch (qu) so

\q’ > dup clear(qu) ¢ nothing happens to kw.
\t’ > dup clear(qu)

tell the program that whenever it sees any of the other markers, it should duplicate what it
has matched and clear swit@u), so that switctjqu) will be inactive, in a sense. The
next two lines:

'’kw' > if(qu) 'gu’ ¢ Change kw to qu for \w and \i
else dup
endif

contain the orthography change we want performed on the data in the \w and \i fields.
They say, whenever a “kw” is encountered anywhere in the data, check to see if switch
(qu) has been set. If it has, change it to “qu.” Otherwise, duplicate what was matched.
Note that this is identical in function to the following:

'’kw' > if(qu) 'qgu’ ¢ Change kw to qu for \w and \i
endif
ifn(qu) dup
endif

Theelsecommand says look at the condition which preceded itemd#command says
ignore what preceded, and look at what follows without prejudice.

So a switch in itself is something that can be used to allow the change table to affect data
or not affect data, depending on its condition.

Arithmetic Commands
There are five arithmetic commands:

— add(name)
— div(name)

— mod(name)
— mul(name)
— sub(name)

For each command, the syntax is the same:

Consistent Changes User’s Guide 45

add(name) 'number’

These commands are always used on the right side of the wedge. They all wonk-with
meric strings A numeric strings a string thatc can convert to a value. Valid characters

in a numeric string are “0” through “9”. It is valid to precede a string of numeric charac-
ters with “-" or “+". cc will convert anumeric stringto anumeric valueSuchvalues

must be in the range of -1,999,999,999 to +1,999,999,999 (without the commas).

cc assumes that the specified storage area contains a valid numeric string and that the
string following the command is also a valid numeric striiwill first convert both the
stringin the specified storage areand the strindollowing the commanihto numericval-
ues The operation (add, divide, etc.) is then performed using thaumeric valuesnd

the result is stored as a numeric string in the specified storageegleajng the store’s
original contents.

Thecont(name¥unction can be used instead of a numeric string (for more information on
thecont(namexommand, see section 3.4). Themeric stringfollowing the arithmetic
command can be any combination of literal strings/smil characters. In other words,

the expressiof84’ is identical to the expressiési d52 (see Section 3.1 for an explana-
tion of usingascil characters).

The numeric string following the command is terminated by the next command. In other
words,cc will regard everything following the command up until the next command as
part of the string to be operated upon. Note thé considered a character and will not
terminate an arithmetic command, nor wijlendfile or *’ (null).

There are examples of these commands in section 3.4.

Consistent Changes User's Guide

Chapter 5 Quick Reference

5.1 Error Messages
This section lists error messages that result from some problem in your table. It does not
list error message that may result from misspelling input file names or table names when
startingcc from theDpos prompt.

All error messages from the program are preceded BZC-E-; ?CC-F- ?CC-W; or
CC-Warning: If an error is found in the table, the line containing the error may be dis-
played, with an arrow pointing at the place at whichrealized the error. Then the error
message will be given. Error messages will specify particular stores, groups, switches and
defines by numbers rather than names. You may have called pustoitgut any error as-
sociated with it will display a number instead. You can find out which store is referenced
by that number by runningc with the debug option.

Some errors can be caused by others. For example, an error in a group name will cause all
references to that group to also appear tacthgrogram to be errors.

If there are errors in your table, the following will be printed after the table has been proc-
essed:

There were errors in the change table.
Correct the errors and rerun.

The rest of this section is a list of the errors tt@agenerates:

Arithmetic: divide by zero in group name
Thediv(hame) ‘numbertommand has been used and‘thueneric string’has a value of
0. To resolve this error, you should chafgember’to be something other than zero.

Arithmetic: non-number in group name
One of the arithmetic commandsdfi(name) ‘number’, div(name) ‘number’, mod(name)
‘number’, mul(name) ‘numberyr sub(hame) ‘numberhas been used and the contents
of the specified storage area does not have a number in it. To resolve this error, you
should be sure that the storage area contains only the characters 0, 1, 2, 3,4, 5, 6, 7, 8, or
9, preceded by an optional - or + sign.

Arithmetic: number greater than 2,000,000,000 in group name
One of the arithmetic commandsdi(name) ‘number’, div(name) ‘number’, mod(name)
‘number’, mul(name) ‘numberfr sub(name) ‘numberhas been used and either the con-
tents of the specified storage area or'tleneric string’is outside the range -
1,999,999,999 to + 1,999,999,999 (do not use commas).

Arithmetic: overflow in group hame
One of the arithmetic commandsdi(name) ‘number’, div(name) ‘number’, mod(name)
‘number’, mul(name) ‘numberfr sub(name) ‘numberhas been used and has resulted in
a number outside the range -1,999,999,999 to + 1,999,999,999 (do not use commas).

Backed too far storing
The number oback(v)commands given exceeded the number of characters in the current
storage area.

Consistent Changes User’s Guide 47

Backed up too far
More than 300 characters were backed usingpdlc&(v)command.

Bad number
The valuev, which should be a number, is not a number or is missing altogether. Com-
mands which expect a numerical argumenbaiek(v), fwd(v)andomit(v).

Begin command not first in table
A beginwas found on the search side of an entry, but it was not the first entry in the table.

Binary command not in begin section
This error results from improper use of an incompletely implemented feature. This error
occurs when thbinary command is used in your table other than inbéginsection of
your table.

Caseless command not in begin section
This error occurs when tlraselesgommand is used in your table other than irbiagin
section of your table.

Decimal number too big, must be less than 256.
Since decimal numbers are used for the £581 codes, they should be within the range 0
to 255.

Defaulting to empty group x
This error occurs when there are no change entries! To resolve this error, add either a
change entry or aendfilesection to your table.

Do nested deeper than 10
Nesting of defined sets of commands is allowed, thdeifie(namefommands are al-
lowed to call othedefine(hamefommands using @o(name)and those can call yet other
such commands. However, there is a limit how deep such nesting can go. That limit is 10.
Check that there is not a loop, or thatedinecommand does not call itself. Both these er-
ror conditions are illustrated below:

Loop: define(1) ... do(2) ...
define(2) ... do(3) ...
define(3) ... do(1) ...

Calling Itself: define(1) ... do(1) ...

Do(name) used but never defined
This error results whendo(namestatement is encountered but there is no corresponding
define(name¥tatement in the table.

FATAL ERROR! excl command in group (name) removes all active groups
An excl(name}hould only be used if you have previously made more than one group ac-
tive with multipleuse(hametommands, and only then if you leave at least one group ac-
tive.

Font section of table is ignored in CC
You may get this error if you try to run a table that has no changes listed in it! More com-
monly, it is because the table you are trying to run contdmst@name)ommand, which
is not a validcc commandFont(name)used to be a validc command, but is no longer.
Thefont(hame)command needs to be removed before the table will run as expected.

48

Consistent Changes User's Guide

Fwd too many
A maximum of 300 characters may be forwarded withhtlt§v) command, even if they
were only moved one character at a time.

Group (name) multiply defined
This error means that identigaoup(nameommands exist in your table in more than
one place. If you have sevemabup(namejommands in your table, you must have a dif-
ferent number or name in placenamein each one.

Keep in mind that entries which appear before thedistip(namexommand are consid-
ered to form a defaugiroup(1) If a subsequent expligjroup(1)appears in the tablec
will abort with a “Group 1 multiply defined” message.

Group (name) excluded but not active
An excl(nameommand was used to exclude a group that was not dexgname)can
only be used on groups that have been activatedusétnamepr incl(name)

Group command not in front of change
A group(namexommand has been encountered, but the next line does not contain a
wedge. Comments may followgsoup command, but check that they are preceded by
<ENTER>C <SPACE>0f <SPACE>C <SPACE>

lllegal command following arithmetic operator
A command that performs an arithmetic operation (suctddé&ame) ‘number’,
div(name) ‘number’, mod(name) ‘number’, mul(name) ‘numtmersub(name) ‘numbey’
has been used without thrimber’.

Illegal command following comparison operator
A command that performs a comparison (sucifeggname) ‘string’, ifgt(name) ‘string’,
orifneq(name) ‘string has been used without thstring’.

lllegal number
An octalAscll code was specified, but contains some character other than 0, 1, 2, 3, 4, 5,
6, or 7. In other words, some string of characters has been encountered which is not en-
closed in quotation marks that is neither a recognized command nor a valigsaatal
number.

lllegal parenthesis
A parenthesis was encountered where no parenthesis is legal. This could be an extra paren-
thesis —set(1))orifeq(1)(3}— or a parenthesis for a command which does not take an ar-
gument in parentheses. The following are commands which do not take an argument in
parentheses:

begin end nl

c endif "

caseless endfile read

dup endstore repeat

else next write --use wrstore(name)

lllegal use of command after >
The following commands cannot be used on the replacement side of an entry:

Consistent Changes User’s Guide 49

any(name) define(name) fol(name) group(name)
prec(name) wd(name)

lllegal use of command before >
Only the following commands are legal on the search side of an entry:

any(name) cont(name) endfile nl prec(name)
begin define(name) fol(name) ” wd(name)

Thegroup(nameommand mustot be followed by a wedge on the same line.

Invalid decimal digit
A decimalascil code was specified, but contains some character other than 0, 1, 2, 3, 4, 5,
6, 7, 8, or 9. Decimal codes are specified by preceding them with the chdracker

Invalid hexadecimal digit
A hexadecimahscil code was specified, but contains some character other than 0, 1, 2, 3,
4,5,6,7,8,9, A, B, C,D,E, or F. Hexadecimal codes are specified by preceding them
with the charactex or X.

Invalid number for arithmetic
One of the arithmetic commandsd@(name) ‘number’, div(name) ‘number’, mod(name)
‘number’, mul(name) ‘numbergr sub(name) ‘numberhas been used and themeric
string’ is not a number. To resolve this error, you should be sure thautheric string’
contains only the characters 0, 1, 2, 3,4, 5, 6, 7, 8, or 9, preceded by an optional - or + sign.

Line too long, end cut off
A line in the table exceeded 125 characters.

Missing parenthesis
The opening parenthesis is missing from a command which expects an argument in paren-
thesegname)

More than 10 prec()s in succession
No more than 1@rec(namerommands can be used together.

No close parenthesis
Either the closing parenthesis is missing from a command which expects an argument in
parentheses or there is an invalid character in the argument.

No wedge on ‘begin’ line
There is begincommand that is not followed by a wedge on the same line.

No definition for do
A do(name)command has been used, but the correspomigifige(namefommand was
never made.

Number cannot be zero
Zero was used as the numerical argument of a command. Zero is not a legal value.

Number too big
A number given as the numerical argument for eitheack(v), fwd(v)pr omit(v) com-
mand exceeds 127. The maximum value allowed forl27. A maximum of 300 charac-

50

Consistent Changes User's Guide

ters may be backed, forwarded, or omitted by using more than one command in a row.
(eg.back(120) back(30auses 150acks to occur.)

Number too big, must be less than 2,000,000,000
One of the arithmetic commandsd@i(name) ‘number’, div(name) ‘number’,
mod(name) ‘number’, mul(name) ‘numbeat,sub(name) ‘numberhas been used and
either the contents of the specified storage area dndingeric string’is outside the
range -1,999,999,999 to +1,999,999,999 (do not use commas).

Number too large
An octalascil number exceeds 377 octal.

Omit too many
More than 30®mit characters were donedra.

Storage overflow of store (n)
So many characters have been stored that the storage area is overflowingcighem-
ning, there is room in memory for approximately 61,000 characters to be stored. This
room is shared between all the storage areas. It is also used by other things in your table.
This error occurs when storage is being done but there is no room for any more characters.

Store name used but never stored into
One of the following commands has been used on a storage area that has not first been
opened with atore(namefommand:
ifeq(name) ifneq(name) outs(name)
ifgt(hname) out(name) wrstore(name)

Switch name tested but never set or cleared
Either aif(name)or ifn(name)command has been used on a switch that has not first been
set with aset(namefommand or cleared withcdear(name)}ommand.

Table too large.
The total volume of the table exceeds the capacity of the program to store it. (This does
not include comments, which are discarded during the storage process.) The maximum
size table thatc can handle is a compiled 64K table. See section 3.5 for information on
compiling a table.

Too many changes.
No more than 2500 changes can be madecintable.

Too many defines
A table cannot have more than 127 differdefine(namefommands.

Too many groups
A table cannot have more than 127 differgmup(namexommands.

Too many stores
A table cannot have more than 127 different storage areas. These storage areas are created
with thestore(namepndappend(name¢ommands.

Too many switches
A table cannot have more than 127 different switches. These switches are created with the
set(hamepndclear(hameommands.

Consistent Changes User’s Guide 51

Unmatched quote
A’ or " has been found in a entry without a corresponding ’ or " before the end of the en-
try. If several quoted strings occur in the entry, any one of them may be missing the quota-
tion mark —the program will not notice that something is missing until the last quotation
mark is unpaired.

Unrecognized keyword
A string of characters has been encountered which is not enclosed in quotation marks but
which also is not a legal command or a leggil octal number. Various control codes
will produce this message, since they are not considered legal charactersiABalgnd
<ENTER>are legal control codes in a table.

Commands which are valid only on one side of the wedge will cause this error if they are
used on the other side of the wedge.

Use of more than 25 groups
More than 25 groups cannot be in active use at once. iAlthough up to 127 groups
may exist in a table, only 25 may be made active usinggb@amegandincl(name)com-
mands.

Use of nonexistent group
A use(namefommand was specified in the table, but the correspogdauyp(name)
does not occur.

Use(name) encountered, but group never defined
A use(name), incl(name)r excl(namexommand has specified a group that does not ex-
ist in the table.

WARNING
Error messages which begin with this word are bringing something to your attention of
which you might not be awarec will probably be able to use your table anyway. The
message following th&/ARNING can be looked up in this section.

Width must be right after wedge
Thewid(name)}command was used in a font entry, but is not immediately after the wedge.
Only spaces and tabs may precedentiténame)command before the wedge. This mes-
sage only occurs when a /m command has been given to compile a table for Manuscripter.

52

Consistent Changes User’s Guide

5.2 Alphabetical Summary of Commands

add(name) ‘number’
any(name)
append(name)
back(v)

begin

c

caseless
cont(name)
clear(name)
define(name)
div(name) ‘number’
do(name)

dup

else

end

endfile

endif

endstore
excl(name)
fol(name)

fwd(v)
group(name)
if(name)
ifeq(name) ‘string’
ifgt(name) ‘string’
ifn(name)
ifneg(name) ‘string’
incl(name)
incr(name)
mod(name) ‘number’
mul(name) ‘number’
next

nl

omit(v)

out(name)
outs(hame)
prec(name)

read

repeat

set(name)
store(name)
sub(hame) ‘number’
use(name)
wd(name)

write ‘string’
wrstore(hame)

/b

Ic

/d

/m

add numeric string to anaee
match any element of storage negae
store in aneame keep previous contents
put last chars output back into input
beginning of table or nested block
comment
ignore case of first character of match
match or compare contents of aseae
clear switatame
defines a set of commands calsde
divide value inameby numeric string
execute set of commands caileache
duplicate match string
else
end nested block
match or output end of file char
endif (applies to allfs)
end storing
exclude (make inactive) graugme
if following character is in are@me
forwardv characters (does not process)
specifies a group calfeime
if switchnameis set
if contents of aremmeequal string
if contents of are@ameexceed string
if switchnameis not set
negative dfeq(name) ‘string’
include (activate) groufame
increment number in storage arame
remainder when valuemameis divided by numeric string
multiply value inameby numeric string
perform commands in next entry
match or output new line
null match; null replacement
omit nextv characters from input
output storage ame@me
output areeame(storing continues)
if preceding character is in areme
read input from keyboard
repeat from precedibggin
set switaame
store in areaame(discard previous contents)
subtract numeric string from valusame
use group calledme
if chars before and after in anaane
output following string to screen
output storage areaneto screen
backup to previous question
compile table
debug trace
compile table foms

Consistent Changes User’s Guide

/o
Ir
It
Iw

new output file
return to beginning
change input media
wait for system

53

54

Consistent Changes User's Guide

5.3 Commands by Logical groupings

Commands Using Switches:

clear(hame)
if(name)
ifn(name)
set(name)

clear switamame

if switchnameis set
if switchnameis not set

set switamame

The following are similar to if(name) in function, but usestorenames, not switch

names:
ifeg(name) ‘string’
ifgt(name) ‘string’
ifneq(name) ‘string’

if contents of aremmeequal string

if contents of aresameexceed string

negative afeq(name) ‘string’

Commands Using Store Numbers or Related to Storage Areas:

add(name) ‘number’
any(name)
append(name)
cont(name)
div(hame) ‘number’
endstore

fol(name)
ifeq(name)
ifgt(name)
ifneg(name)
incr(name)
mod(name) ‘number’
mul(name) ‘number’
out(name)
outs(name)
prec(name)
store(name)
sub(hame) ‘number’
wd(name)
wrstore(name)

add numeric string to storage aaeae

match any element of storage negae

store in area name, keep previous contents
match or compare contents of asrae

divide storage aneameby numeric string

end storing
if following character is in are@me

if contents of areeameequal string
if contents of aresameexceed string

negative afeq(name)

increment number in storage arame
remainder when valueameis divided by numeric string
multiply value in areemmeby numeric string
output storage amame

output areeame(storing continues)

if preceding character is in arame

store in areame(discard previous contents)
subtract numeric string from storageraagae
if chars before and after in storage aagae
output storage areameto screen

Arithmetic Commands:

add(name) ‘number’
div(name) ‘number’
incr(name)
mod(name) ‘number’
mul(name) ‘number’
sub(name) ‘number’

add numeric string to storage aaese

divide storage aneameby numeric string

increment number in storage arame

remainder when valueameis divided by numeric string
multiply value in areemeby numeric string

subtract numeric string from storagerexeee

Ordinary Number Commands:

back(v)
fwd(v)
omit(v)

put last’ chars output back into input

forwardv characters (does not process)
omit nextv characters from input

Consistent Changes User’s Guide

Commands Using Group Numbers:

excl(name) exclude (make inactive) gravgme
group(name) specifies a group calteime
incl(name) include (activate) gromame
use(name) use group calledme

Commands that can Cause a Loop:

back(v) if not outputting something different or using a different group
repeat if no way to stop repeating

** (null match) if not used witHwd, omit, oruse

endfile if matched and not output on right

define(name)/do(name) if 2 or more defined procedures call each other

Commands Using Defined Procedures:

define(name) defines a set of commands callede
do(name) execute set of commands catleche
next do next set of replacement commands
caseless process data in “caseless mode”

Commands Involving the Screen or Keyboard:

read read input from keyboard
write ‘string’ output following string to screen
wrstore(name) output storage areameto screen

Nested Block Commands:

begin beginning of nested block

else else

end end of nested block

endif end of conditional set of commands
if(name) if switch name is set

ifeq(name) if contents of areeameequal string
ifgt(name) if contents of areeameexceed string
ifn(name) if switchnameis not set

ifneg(name) negative afeg(name)

repeat repeat from previobggin

Commands which occur Only on the Search Side:

any(name) match any element of storage aezae
fol(name) if following character is in are@me
prec(name) if preceding character is in arame
wd(name) if chars before and after in aneane
define(name) defines a set of commands

Commands which may occur on Either Side
(Note that the usage of these commands may be different
on opposite sides of the wedge):

begin beginning of table or nested block
cont(name) match or compare contents of agrae
endfile match or output end of file char

nl match or output new line

null match; null replacement

56

54

Decimal Hexadecimal Octal Character Abbrev Meaning

ASCII Codes

ASCII Control Codes

©Co~NoOOOh~,WNEO

0 0 @
1 1 A
2 2 "B
3 3 AC
4 4 "D
5 5 AE
6 6 °F
7 7 "G
8 10 ~H
9 11 A
A 12 A
B 13 K
C 14 AL
D 15 M
E 16 "N
F 17 1O
10 20 AP
11 21 ~Q
12 22 R
13 23 s
14 24 AT
15 25 AU
16 26 AV
17 27 "W
18 30 X
19 31 Y
1A 32 77
1B 33 A
1 34 A
1D 35 A
1E 36 M
1IF 37 ~

NUL null
SOH
STX

EXT exit

EOT end of tape
ENQ
ACK

BEL bell

BS back space
HT horizontal tab
LF line feed
VT vertical tab
FF form feed
CR carriage return
SO

Sl

SLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

EOF end of file
ESC escape
FS

GS

RS

us

Consistent Changes User's Guide

Consistent Changes User’s Guide

Other ASCII Codes

Decimal Hexadecimal Octal Character

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120

SPACE

OO ~NOAPWNELO ™~

TOozzrXxe " IOTMMUOW>»g >V I AT

57

58

Other ASCII Codes (continued)

Decimal Hexadecimal Octal Character

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

> N<XXSE<CHOWITO

| ~=~N<Xsg<Cc~"0W-"QToOosg—x—"7Q@ "0a®T®

DELETE

Consistent Changes User's Guide

