
Consistent Changes
User’s Guide

Version 7.4
June 1991

© copyright June, 1991 JAARS, Inc.

Table of Contents

Chapter 1 Introduction To Consistent Changes 3

1.1 Notes on This Manual . 3

1.1.1 Purpose . 3

1.1.2 Prerequisites for Understanding This Manual 3

1.1.3 Documentation Conventions 3

1.2 How Can Consistent Changes Help Me? 3

Chapter 2 Creating And Using A Change Table 5

2.1 Creating a Change Table . 5

2.2 Using a Change Table . 5

Chapter 3 Consistent Changes Description 8

3.1 Form of Changes . 8

3.2 How Changes are Processed . 9

3.3 Order of Changes . 9

3.4 Command Description . 10

3.5 I/O Options . 26

3.6 Running CC from the Command Line 28

Chapter 4 Advanced Features . 30

4.1 Storage Commands . 30

4.2 The Back Command . 36

4.3 Groups . 38

4.4 Switches . 40

4.4.1 Introduction . 40

4.4.2 What the Commands Do 41

4.5 Arithmetic Commands . 44

Chapter 5 Quick Reference . 46

5.1 Error Messages . 46

5.2 Alphabetical Summary of Commands 52

5.3 Commands by Logical Groupings 54

5.4 ASCII Codes . 56

Consistent Changes User’s Guide 1

2 Consistent Changes User’s Guide

Chapter 1 Introduction To
Consistent Changes

1.1 Notes on This Manual

1.1.1 Purpose
This manual is basically designed to be a reference manual, although instructional infor-
mation has been included on some of the more advanced features of the Consistent
Changes (CC) program. The purpose of the manual is to fully describe the CC program
(CC.EXE), which is part of the Direct Translator Support package. This manual does not
include a tutorial for beginners, but a separate tutorial entitled “Using the CC (Consis-
tent Changes) Processor” has been distributed with this “Consistent Changes User’s
Guide” as a part of the DTS documentation.

1.1.2 Prerequisites for Understanding This Manual

1. Familiarity with the computer to be used and a working knowledge of DOS, in-
cluding how to change directories and start programs from the DOS prompt.

2. Ability to use ED or some other word processor to produce unformatted text files.
(See the manual for your word processing program if you are unsure of how to
do this.)

1.1.3 Documentation Conventions
The following visual cues have been used in this documentation to help you interpret the
information presented.

italic type Used for anything that you must type exactly as shown.

Italic type is also used for CC commands and their arguments, refer-
ence to a specific part of a CC table, or words that are given special
emphasis.

bold type Used for information you must provide. For example, in place of
the word filename, type in the name of a file.

ALL CAPITALS Used for directory names, file names, acronyms, and command
names.

Also used for names of keys on the keyboard, for example <CTRL>,
<ENTER>.

<CTRL> + key The plus sign between key names means that you hold down the
first key and press the second key. For example, <CTRL> + c means
hold the CONTROL key down and press c.

The contents of files will be shown as mono-spaced type. The computer’s response to
what is typed will also appear as mono-spaced type.

1.2 How Can Consistent Changes Help Me?
The CC program is useful for finding all occurrences of specified characters, words, or
phrases in a text file or series of text files, and making some type of change to this data in
a consistent way. The change may be done in every occurrence found or only when cer-
tain conditions are met.

Consistent Changes User’s Guide 3

CC is like the “search and replace” feature in a text editor, except much more powerful be-
cause it allows you to make changes which take context into consideration. Beyond the
search and replace feature, CC can also be used to count words in a text, insert or remove
text, or reorder parts of a text.

4 Consistent Changes User’s Guide

Chapter 2 Creating And Using
A Change Table

2.1 Creating a Change Table
In order to use the Consistent Changes program, you must have a text file that describes
the changes you want made. This file is called a change table. There are several change ta-
bles in the DTS package for handling scripture. You may either use an existing change ta-
ble, modify an existing table or create your own table. The table can be executed by
running the Consistent Changes program as described in section 2.2.

A change table can be created or modified using ED or almost any other word processor. If
you are using some program other than ED, be sure that you save your document as an un-
formatted text file (with line breaks in MS-Word). The filename extension “ .CCT” is com-
monly used when naming CC tables.

The simplest change table instruction will have a searched-for item (search string) in a
pair of quotes (double or single). This will be followed on the same line by a space, a right
wedge, and another space. Next will be the desired replacement (replacement string),
again in quotes. The right wedge is an integral part of the CC command and is not enclosed
within quote marks. The right wedge separates the search side of the table entry from the
replacement side.

For example, suppose you wanted to change all occurrences of “house” to “home” . In a
small text file, you would probably make the changes yourself in your word processor.
However, making the changes to a large file, or a whole series of files, could take a long
time, and typing errors might occur in the process.

The following simple CC table could be used to accomplish this change quickly and accu-
rately:

"house" > "home"

Input:
 Our house is a very fine house. We like our house.
Output:
 Our home is a very fine home. We like our home.

See section 3.1 for a more detailed description of the format of a change table.

As you write your change table, it is very important to remember how the CC program
works: CC “ reads” your text file one character at a time. As the program reads a charac-
ter, it tries to match it to a search string on the left side of the change table. If it matches
an entry the program obeys the commands on the right side of the table and the replace-
ment text is sent to the output. The piece of input that matched does not go to the output.
Remember that CC is a search and replace program. Once it finds what it is searching for,
it replaces it with something else. If a character of text doesn’t match any search string, it
goes straight to the output and the CC program reads the next character.

See the tutorial “Using the CC (Consistent Changes) Processor” for more examples and
further explanation of how CC works.

2.2 Using a Change Table
This section assumes that you have found the file CC.EXE on your DTS diskettes, and that it

Consistent Changes User’s Guide 5

has been copied into your current directory or into a directory that has been included in
your DOS path.

When you run CC, it will ask you for three filenames: the changes file, the output file, and
the input file, in that order. The changes file contains the instructions that tell CC what to
change. The output file is the file CC will create as it applies the changes to the input file.
The input file contains the text you want changed.

The CC program doesn’t actually change the input text file, it creates a new text file like
your original input file, except the changes specified in the change table have been made
to it. So, in the end you will have a “before” and “after” version of your file.

In the following instructions, what you type is in bold print. After typing in the answer to
each question, press the <ENTER> key.

At the DOS prompt, type: CC<ENTER>

The Consistent Changes program will ask: Changes file?

Type the name of the change table file you have created, then press <ENTER>. If you do
not include a file extension, the CC program will first look for the file without an exten-
sion. If it cannot find a file without an extension, it will look for the file with a “ .CCT” ex-
tension. If it still does not find the change table, CC will respond:

filename not found. Changes file?

You will then have an opportunity to enter the correct change table filename.

The program will then ask: Output file?

At this point, type the name of the “after” or output text file, to be created by CC, then
press <ENTER>. If you only want to view the output on the screen, you may type CON: in-
stead of a file name. If you want to send the output to a parallel printer, type PRN: or
LPT1: . To output to a serial printer, type COM1: or COM2: . (Users of older versions should
note that CC no longer makes use of printer definition files. This means you may not spec-
ify something like P321: or EPSONLQ:. CC will only output to disk files or to physical de-
vices such as CON: and PRN:.)

When writing the output to a file, if there is already a file by that name in that directory,
the CC program will respond:

filename already exists. Replace it [no]?

If you wish to keep the existing file with that name (or if you aren’t sure), respond no <EN-

TER>, and CC will reprompt for the name of the output file. If you want to overwrite the ex-
isting file, answer y <ENTER>. (CAUTION : If you accidentally typed the name of your input
file here, respond no; otherwise it will be destroyed.)

The next question CC will ask is: Input file?

Type the name of the file containing the text you want changed, the “before” text file. If
the program can’t find a file you named, it will give you a chance to enter a different input
file name. The program’s response will be:

6 Consistent Changes User’s Guide

filename not found.
Input file?

After you specify the input file, the program will process your file. Just before it finishes,
it will beep and ask:

Next input file (<RETURN> if no more)?

If you want multiple files combined into one output file, type in the next filename. Your
previous file will be completed and the next file will be treated as a continuation of it. Any
number of files can be combined in this manner. If you press <ENTER> only, the remainder
of your file will be output and the program will then stop, returning you to the system
prompt.

If for any reason you need to stop the program after it has started, press <CTRL> + c. If you
were outputting to a printer, a few more lines may continue to print because the printer
holds some of the information internally before printing it.

If you type /b <ENTER> in response to the “Output file?” or “ Input file?” questions, the
program will back up and ask the previous question again. This allows you a chance to
give a new answer to the question if it was answered incorrectly. If a mistake is discov-
ered after pressing <ENTER> in response to the “ Input file?” question, your only recourse
is press <CTRL> + c, then rerun the program.

(See section 3.5 for a description of other I/O options available).

Consistent Changes User’s Guide 7

Chapter 3 Consistent Changes
Description

3.1 Form of Changes
A change file must be created before CC is run. A change file is a text file which consists
of one or more change entries. All change entries are of the form:

search > replacement

The search must fit on a single line. The right wedge (>) must be on the same line as the
search. The replacement may be any number of lines. Blank lines are allowed.

Both the search and the replacement are made up of any combination of the following ele-
ments:

1. Strings
This is a sequence of one or more printable characters. Such sequences of characters are
enclosed within matching sets of single or double quotes. If the replacement is on more
than one line, each line must be enclosed in its own set of quotes. Any string containing
a single quote mark must be enclosed in double quote marks, and any string containing
a double quote mark must be enclosed in single quote marks.

2. Commands or keywords
These are short or abbreviated words which instruct the Changes program to perform
certain functions. Commands are not enclosed in quotes. Commands must be sur-
rounded by spaces or tabs. The commands are listed in Section 3.4.

3. ASCII codes
It is sometimes necessary to use non-printing ASCII codes in a CC table. Both printing
and non-printing characters can be represented with ASCII codes; however, it is usually
best to simply enclose a printing character in quotation marks rather than use its corre-
sponding ASCII code. For example, it is easier to type and understand ’A’ than its deci-
mal value d65.

A complete chart of ASCII codes has been included in section 5.4. Discussion follows on
decimal, hexadecimal, and octal codes, respectively.

The decimal ASCII value of the character may be used, without quotes, if it is immedi-
ately preceded by a “d” (either upper or lower case). For example, d8 would represent a
<BACKSPACE>, and d9 a <TAB>). The “d” and the ASCII code must be surrounded by
spaces or tabs. ASCII control codes are listed at the very end of this manual. The deci-
mal codes 1-255 are legal before and after the wedge. Note, however, that decimal
codes d10 (linefeed), d13 (carriage return), and d26 (end of file) may yield unexpected
results and should not be used.

The hexadecimal ASCII value of the character may be used, without quotes, if it is imme-
diately preceded by an “x” (either upper or lower case). For example, x8 would repre-
sent a <BACKSPACE>). If and only if hexadecimal is used, only one “x” need precede
multiple ASCII codes (eg. X7E08 is tilde + <BACKSPACE>). If you do this, however, be
sure that each ASCII code is expressed using 2 digits (eg. tilde + <BACKSPACE> should
be represented by x7E08, not x7E8). The hexadecimal codes 1-FF are legal before and
after the wedge. Note, however, that x0A, x0D, and x1A may yield unexpected results
and should not be used.

8 Consistent Changes User’s Guide

Note: Octal may be used by not preceding the ASCII code with anything (eg. 10 is
<BACKSPACE>). The octal codes 1-377 are legal before and after the wedge. Note, how-
ever, that 12, 15, and 32 may yield unexpected results and should not be used.

WARNING! Although use of octal numbers greater than 377 will result in an error mes-
sage, use of octal numbers greater than 100000 will not produce an error message.

4. Spaces or tabs
Spaces and tabs separate the strings, commands, and ASCII codes from one another and
from the wedge. These spaces and tabs are ignored by CC during processing, but at least
one space or tab is required as a separator.

3.2 How Changes are Processed
Once a match string has been found in the input data, the program does whatever is on the
replacement side of the wedge. The matched string is not sent to output unless the replace-
ment side contains a dup command or explicitly puts it into the output. Then, instead of
continuing to move through the table with the same data, it moves on to the next piece of
input data. Data is only processed once, unless it is brought back into the input from the
output with the back(v) command.

3.3 Order of Changes
Change entries are sorted by CC prior to any processing of the input text. They are sorted
according to the number of characters that are being searched for on the left side of the
wedge, longest search string first. If the word “sentimental” was in the input file, it would
be changed to “emotional,” not “sentipeopletal” in the output file, because CC uses the
longest match string (in this case, line 2) first.

"men" > "people" c line 1
"sentimental" > "emotional" c line 2

If more than one group is being used, the changes are not mixed. Groups will be searched
in the order requested, regardless of the length of change strings in any of the other
groups. Within the groups, however, changes will be searched longest first.

Note that in the following example, line 2 has precedence over line 1:

begin > store(affix) "abc" endstore

"test" > "x" c line 1
"test" fol(affix) > "y" c line 2

Also, any(name) takes precedence over fol(name) or prec(name). In the following exam-
ple, line 2 has precedence over line 1:

begin > store(affix) "abc" endstore

"test" fol(affix) > "fol" c line 1
"test" any(affix) > "any" c line 2

The reason for this is that fol(name) and prec(name) are conditions for the match, not part
of the match, as opposed to any(name), which is actually part of the match (see Chapter 3
for a more detailed information on fol(name), prec(name), and any(name)).

In general, the following rule is used when CC is sorting entries: any(name) has the same

Consistent Changes User’s Guide 9

weight as one full character, fol(name) and prec(name) each have weight of 1/10th of a
character. This guarantees that entries with fol(name) or prec(name) will take precedence
over similar entries without the fol(name) or prec(name) (as in EXAMPLE 2), but entries
with any(name) will take precedence over similar entries with fol(name) (as in EXAMPLE

3).

The only time search entries are not sorted by length is when they have the same relative
length — for example:

begin > store(1) ’aeiou’ endstore
’xa’ > ’ksa’
’x’ any(1) > dup

In this case CC will process the lines in order. When the string “xa” is encountered “ksa”
will be output. Even though the next entry would also match the input and appears longer,
CC equates both lines as having the same length. Thus, the “xa” entry remains first in this
group and is processed first.

Just to cover all the other cases where ordering of table entries might cause problems, CC

has an ‘unsorted’ option so that you can completely suppress CC’s sorting. To use this op-
tion, place the keyword ‘unsorted’ on the begin line as in the following example:

begin > unsorted

"a" > "x"
"ab" > "y"

When CC is processing this table, it will always search the entries in the order they physi-
cally appear in the table, thus for the input text “abc” the output would be “xbc” (rather
than the output of “ yc” which would be expected if the ‘unsorted’ option was omitted).

WARNING WARNING WARNING : We STRONGLY discourage use of the ‘unsorted’ option
because it violates the “ longest match first” principle. This can make a table very confus-
ing for a human reader to understand or predict what will happen to his data because it
changes the very nature of how CC operates.

3.4 Command Description
All commands must be entered in lower case.

In the list of commands that follows, you will notice that some commands take a parenthe-
sized argument (an example of an argument is the name in store(name)).

Some commands that take an argument take a value, represented by (v). There are three
such commands:

back(v)
fwd(v)
omit(v)

Other commands that take an argument take a string, represented by name. Any combina-
tion of printable characters (including numbers) can be used in a string as an argument for
these commands (except a comma, which is used as a separator for multiple arguments).
These strings are case-sensitive. In other words, CC will treat store(NAME) and
store(name) as two different stores.

10 Consistent Changes User’s Guide

There are four classes of elements which can be named:

– defined sets of commands
– groups
– storage areas
– switches

The naming of each is totally independent of the naming of any of the others. (eg. nothing
automatically happens to switch examp when something is stored in area examp.

Any command which takes a parenthesized string argument name may take more than one
string, separated by commas (i,j,k). This has the effect of repeating the command. For ex-
ample, if(1,2) is the same as if(1) if(2). For some commands (eg., define) the use of multi-
ple names is meaningless; for others it could be misleading (eg., use(1,2) does not equal
use(1) use(2)).

add(name) ‘number’ — ADD number TO STORE name
This command adds the value of number to the value in storage area name. It can only be
used on the right side of the wedge. The results of the operation are stored in name, replac-
ing name’s previous contents. For example, the following will output “56” :

begin > store(test) ’22’ endstore
 add(test) ’34’

 out(test)
Note: A sign (+ or -) may precede the number. Leading zeros in a storage area will be re-
moved after an add (or any other arithmetic operation except incr). If store(test) had
“0022” in the above example before the add operation, the final result would still be “56” .

any(name) — ANY ELEMENT OF STORAGE AREA name
This function causes a match if any single character in the specified storage area is found
in the input data. It may be combined with a string or used alone. This command can only
be used on the left side of the wedge. It is useful for matching words which use any ele-
ment of a closed class (eg., any vowel). In contrast to the prec, fol, and wd commands, the
character is actually matched and can be output with dup or stored in a storage area.

For example, you could change all the consonants to C and all the vowels to V in a text,
then run it through the wordlist program (WDL) to get a count of all the word-level CV pat-
terns:

begin > store(vowel) ’aeiou’ endstore
 store(cons) ’bcdfghjklmnpqrstvwxyz’ endstore
 store(punct) ’.,"?:;!()[]{}’ endstore

any(vowel) > ’V’ c Vowels become V
any(cons) > ’C’ c Consonants become C
any(punct) > ’’ c Remove punctuation

This will delete all punctuation, change all vowels to ’V’, and all consonants to ’C’.

See also the example under the fol command.

append(name) — APPEND TO STORAGE AREA name
This command is quite similar to the store(name) command. However, the store(name)
command causes the previously stored contents of area name to be discarded, whereas the

Consistent Changes User’s Guide 11

append(name) command retains the previous contents and inserts the new data at the
“end,” following any data that was already in the storage area. This command can only be
used on the right side of the wedge.

back(v) — MOVE BACK v CHARACTERS FROM OUTPUT
This command causes the last v characters output to be removed from output or storage
and put back into the input stream of text, so it can be checked for a match again. This
command can only be used on the right side of the wedge. The maximum number of char-
acters that can be backed over is 300 characters, or to the beginning of the storage area (or
output), whichever is less. For example:

’ ’ > ’ ’ back(1)

changes all sequences of spaces to one space, because the space character that has been
output can again be a part of the following match. Note that the number v cannot be larger
than 127, but more than one back command can be used to back up a total of 300 charac-
ters.

Be careful when using the back command, since it is easy for the table to become hung up
in an endless loop. If you use the back command, make sure there is either something else
in the group that will match the results or send the table to another group with the use com-
mand. For example:

group(1) c make orthographic changes in word entries only
 ’\w’ > dup use(2)

group(2) c change ae to e and return to group one
 ’ae’ > ’e’
 ’\’ > dup back(1)

Without a use command to get the program out of group(2), the program will hang up
when it comes to the next back slash. It will recognize the back slash, dup it, back up, rec-
ognize the back slash, dup it, back up ... on and on.

begin — BEGINNING OF INPUT FILE OR NESTED BLOCK
If used on the left side of the wedge, this command must be by itself, without quotes
around it, and it must be the first entry in the table. (Comments, however, may occur be-
fore the begin entry). The replacement which follows the begin command will be exe-
cuted before any input data is read. It will not be executed again.

The endfile command cannot be used after the begin statement for initializing a table. CC

will give the error message

’CC-F-Defaulting to non-existent group 1’.

On the right side of the wedge, this command is used in conjunction with the end com-
mand to separate a command or string from other commands or strings. They are primar-
ily used for nesting if’s and else’s. Note that if’s and else’s cannot be truly nested without
using begin and end. See the end command for an example of this.

The begin and end commands must be used to tell the program when a string ends for
mathematical or comparison operation and the next string begins for data that is to be out-
put. For example:

12 Consistent Changes User’s Guide

nl > add(count) ’2’ nl c causes an error

This produces an error, because CC considers the nl command as part of the string that
should be added. Another example is with comparing strings.

’.’ > ifeq(fruit) ’apple’ ’We have apples.’ nl
 else ’We do not have apples.’ nl
 endif c this also will not work

Even though the contents of storage area fruit is equal to “apple” the command is compar-
ing it to “appleWe have apples.” And the program will output the message “We do not
have apples.”

To overcome this problem, use the begin and end commands.

nl > begin
 add(count) ’2’ c this works
 end
 nl

’.’ > ifeq(fruit) ’apple’
 begin

 ’We have apples.’ nl
 end
 else ’We do not have apples.’ nl
 endif

The table will generate no errors and will produce the correct output.

c — COMMENT
This command may occur on a line of its own or on the right side of the wedge, sur-
rounded by spaces. It is used to indicate comments which explain to the user the purpose
of entries in the table. The rest of a line containing a c is ignored by the program.

Although the comment lines are ignored by the program, they are the most important lines
in a change table for the user. Comments should be added to the beginning of any table to
explain the purpose of the table, the form of the expected input text and include the
author’s name. This information could be of great value later when trying to figure out
how the table works, so modifications can be made. Comments should be added through-
out the table to describe the purpose of each group, store, switch and define when there
are more than one of each. On tables longer than one page these comments should be
grouped together either at the beginning or the end of the table so the user can find them
easily.

caseless — CASELESS MATCH
This command is placed on the right side of the wedge in the begin section of the table.
(See the begin command). It will be applied to all of the input data. The caseless com-
mand causes the first letter of a potential match string from the input to be treated as if it
were a lowercase letter during the matching process, regardless of whether it was upper or
lowercase in the input file. For this reason, the first character in the match string must be
lowercase for a match to EVER occur when using caseless. Note: All other characters in the
match string are matched exactly, and case is NOT ignored.

If the replacement string begins with a lowercase letter, the case of the first letter of the
matched string will be preserved in the output. If the replacement string begins with an up-

Consistent Changes User’s Guide 13

percase letter, the first letter of the output string will always be output as an uppercase let-
ter, regardless of the case of the first letter of the input string that was matched.

Note that caseless only works with the alphabetic letters a-z and A-Z. It will not apply to
the first character of a string which does not begin with a letter.

clear(name) — CLEAR SWITCH name
This command clears (un-sets) a switch which was set by a set command.

cont(name) — CONTENTS OF STORAGE AREA name
On the search side, this function causes the contents of the specified storage area to be
treated like a match string. For example:

begin > store(quark) "abcd" endstore
cont(quark) > "wxyz"

will function exactly like “abcd” > “wxyz”

On the replacement side, this function is used in conjunction with the ifeq(name) ‘string’,
ifneq(name) ‘string’, and ifgt(name) ‘string’ commands. For example:

’x’ > ifeq(proton) cont(quark) out(quark)
 endif

says “ if the contents of storage area proton equals the contents of storage area quark.”

define(name) — DEFINE SET OF COMMANDS name
This command allows the user to define a set of commands to be executed by the
do(name) command. You may define up to 127 such sets, distinguishing them by using a
different string for name. Whatever number or name you use for name when you define
the set for the first time is what you must use when you subsequently do it (see the
do(name) command). The form of the command is:

define(name) > commands to be executed

As a matter of practice, it is probably best to put all defined commands at the beginning of
the table, after the begin statement, and before the first group. This command occurs only
on the search side of the table.

div(name) ‘number’ — DIVIDE STORE name BY number
This command divides the value in the storage area name by the value specified by num-
ber. The results of the operation are stored in name, replacing name’s previous contents.
For example, the following will output “7” :

begin > store(results) ’21’ endstore
 div(results) ’3’
 out(results)

 Any remainder will be discarded. In the following example, 21 divided by 5 is
equal to 4 with a remainder of 1. CC will discard the remainder “1” and store a “4” in
store(results):

begin > store(results) ’21’ endstore
 div(results) ’5’
 out(results)

do(name) — DO SET OF COMMANDS name
This command causes a set of commands which were specified by a define(name) com-

14 Consistent Changes User’s Guide

mand to be executed. It can only be used on the right side of the wedge. For example:

define(vowel) > ’***’ dup ’***’
’a’ > do(vowel) set(proton)
’e’ > do(vowel) set(neutron)
’i’ > do(vowel) set(nucleus)
’o’ > do(vowel) set(quark)
’u’ > do(vowel) set(fusion)

The do command is more flexible than the next command because do can be used before
other commands, and next cannot. Also, do commands can be “nested,” that is, they can
be used inside of defines, up to a “depth” of 10. For example:

define(1) > ’x’ do(2) ’x’
define(2) > ’y’ do(3) ’y’
define(3) > ’z’
’a’ > ’w’ do(1) ’w’

In this example, an a, will be changed to wxyzyxw.

In this example, when the command do(1) is encountered in the table, it causes CC to exe-
cute the commands following the define(1) command. Those commands happen to in-
clude a do(2) command which cause CC to execute the commands following the define(2)
command. Those instructions happen to include a do(3) command, which causes CC to
execute the commands following the define(3) command. At this point the nesting depth
is three. After the commands following the define(3) command are finished, CC will go
back and finish the commands (if any) in define(2). When finished doing define(2), CC

will go back and finish the commands (if any) in define(1). When finished doing de-
fine(1), CC will go back and finish the commands (if any) on the line that originally con-
tained the do(1) command.

dup — DUPLICATE SEARCH ELEMENT
This function will duplicate the search element of the change into the output file or stor-
age area. Duplication may be done repeatedly.

else — ELSE
The else command signals the program to take action when the condition examined by the
if statement is not true. It also signals the program to stop taking action when the condi-
tion examined by the if statement is true.

The else command is the second part of the three parts of the if statement. The first part is
the if command and the last is the closing endif command. The else command is optional.

’I will ’ > dup if(rain) ’stay inside.’
 else ’go for a walk.’
 endif

Putting this CC table into English would give, “ I will stay inside if it is raining, otherwise
I will go for a walk.”

Note how the if, else, and endif commands were aligned. This is not necessary for the ta-
ble to function, but makes it easier to see what action will take place when the condition is
true or false. And shows that there is an endif command to terminate the if condition.

Consistent Changes User’s Guide 15

If you must check on multiple conditions, you should use the begin and end commands
for nesting. See the end command for an example of this. See also if(name), ifeq(name),
ifgt(name), ifn(name), ifneq(name).

end — END OF NESTED BLOCK
This command indicates the end of a block of nested ifs or elses. The corresponding block
initiator is the begin command. (Do not confuse the begin command which initiates a
nested block with the begin command which allows commands to be executed at the be-
ginning of a file.) For example:

’x’ > if(1)
 begin
 if(2) ’a’
 else ’b’
 end
 else
 begin
 if(2) ’c’
 else ’d’
 end

c The preceding entry outputs a if 1 and 2 are on,
c b if 1 is on and 2 off, c if 1 is off and 2 on,
c and d if 1 and 2 are both off

End can also indicate the end of a repeated block of commands. (See the repeat com-
mand.)

endfile — END OF INPUT FILE
The replacement for this command will be executed after all input data has been read and
processed. This command must be listed as the only element of a search. The last element
of the replacement must also be endfile (or dup), or the program will not stop. For exam-
ple:

endfile > out(3) endfile c store 3 out at very end

This endfile entry may occur at any point in the table, it does not have to be last.

endif — END IF
This command marks the end of a conditional segment of a replacement specification. It
applies to all conditionals currently in effect, unless nested with the begin and end com-
mands. See also if(name), ifeq(name), ifgt(name), ifn(name), ifneq(name).

endstore — END STORING
This command will cause any storing in effect to stop. It re-routes the output from storage
to the actual output file. See store(name).

excl(name) — EXCLUDE GROUP name
This command will exclude the group name (see the group(name) command) from the
groups that CC is currently using. It can only be used on the right side of the wedge. This
table:

16 Consistent Changes User’s Guide

begin > use(dos,mac,unix,windows)
 use(dos,mac,windows)

will have the same effect as this table:

begin > use(dos,mac,unix,windows)
 excl(unix)

It has the opposite effect of the incl(name) command.

fol(name) — MATCH IF FOLLOWED BY ANY CHARACTER IN name
This function will cause the string to be matched only when followed by any one of the
characters contained in the storage area name. Note that the character itself is not matched
and will not be output by the dup command. The character is a condition of the match, not
a part of the match.

This function should be used only on the search side, between the match string and the
wedge. It is particularly convenient for matching strings which are required to be at the
end of a word. All word-final punctuation, including space, can be stored in a particular
storage area and used with the fol(name) command. Here is an example of the fol com-
mand:

begin > store(vowel) ’aeiou’ endstore
 store(stop) ’bdg’ endstore
any(vowel) fol(stop) > dup dup

This would double any character found in storage area vowel (a, e, i, o, or u) that was fol-
lowed by one of the characters in storage area stop (b, d, or g).

More than one fol(name) command may be used in succession. For example, the com-
mand ‘test’ fol(1,2,3) will look for test, followed by something in storage area 1, followed
by something in storage area 2, followed by something in storage area 3.

Compare this with the commands wd(name), prec(name), and any(name).

fwd(v) — MOVE FORWARD v CHARACTERS
This command causes the next v characters that would be input to be passed directly to
output or storage, without being considered for matching in the table. This command may
only be used on the right side of the wedge. Although v cannot be greater than 127, as
many as 300 characters may be forwarded in sequence by using more than one fwd(v)
command; attempting to move more than 300 characters will be regarded as an error con-
dition, and an appropriate message will be given.

group(name) — GROUP OF CHANGES name
This command identifies the following changes as belonging to the group name. Which
group of commands is currently active is controlled by the use(name), incl(name) and
excl(name) commands. If a table consists of only one group, the group command is not
necessary. You may define up to 127 groups, distinguishing them by using a different
string for each name. Whatever name you choose for name in the group(name) command
is the name you must specify when you subsequently make the group active with the
use(name) command.

This command is put at the beginning of a line by itself and is not followed by a wedge. In

Consistent Changes User’s Guide 17

a sense, it is not a command, but a label at the beginning of each set of change entries.

Groups are particularly useful when certain changes are wanted in one context but not in
another, eg., changing the orthography of one language inside a bilingual dictionary file.

If the change table is longer than two pages, then numbers should be used for each group
name instead of string names. This will make it easier for the user to follow the flow of
the table when the program changes groups.

The program will always start with the group that has a name of “1” or the first group in
the table, if there is no group(1). However, a use command in the begin statement can in-
itialize the table to start with a specific group or groups active.

If a number followed by letters is used as the name of a group, that number is associated
with that group name when the table is loaded. Should that name begin with the numeral
1, that group will function as though it were group(1) and will become the first active
group in the table unless otherwise designated. For example:

begin > caseless

group(main)
’\w’ > dup use(1st)
’\d’ > dup use(1st)

group(1st)
’a’ > ’V’
’b’ > ’C’
’\’ > dup back(1) use(main)

CC will begin processing text using the set of changes found in group(1st) not in
group(main) as you might expect. This feature of CC could cause strange looking output,
until the table gets in synch with the data coming into it.

if(name) — IF SWITCH name IS SET
The if command checks the status of switch (name) and executes the following commands
based on the condition of the switch. The if command can only be used on the right side of
the wedge.

If the switch is set, then following replacement commands are executed. (See set(name)
and clear(name) commands). If the switch is clear, then the following replacement com-
mands are ignored.

There are three parts to an if command, and the if(name) is the first part. The last part is
the endif command. The second part (optional) is the else command.

The if command may be nested with other if commands (checking for multiple conditions)
by using the begin and end commands. (See end command for an example of nested if
commands.) See also ifn(name).

ifeq(name) ‘string’ — IF STORE name EQUALS string
This command executes the following commands if the content of store name exactly
matches the string. It can only be used on the right side of the wedge. The sequence
’string’ is any combination of literal strings, nls, and ASCII characters (such as d8 for back-
space). The cont(name) command can be used instead of a string to compare the contents
of store name to the contents of another storage area. (See the cont(name) command.) For
example:

18 Consistent Changes User’s Guide

’x’ > ifeq(orange) ’apple’ set(ripe)
 endif

will have exactly the same results as:

’x’ > store(fruit) ’apple’ endstore
 ifeq(orange) cont(fruit) set(ripe)
 endif

The string is terminated by the following command. Note that nl is considered a character
and will not terminate an ifeq or write command, nor will c, endfile, or ‘ ’ (null) .

The conditional execution is terminated by an endif or else command, or by the end of the
table entry. Note that when doing comparisons of stores with ifeq(), ifneq() and ifgt(), any
leading zeros that may be in the store will be irrelevant because CC attempts a numerical
comparison of stores before it does a byte-for-byte ASCII comparison.

See also the discussion under the if(name) command.

ifgt(name) ‘string’ — IF name IS GREATER THAN string
This command is very similar to the ifeq command, in that it compares the contents of
store name to the following string or to the contents of another storage area. It can only be
used on the right side of the wedge. If the contents of name are “greater than” the string,
the following commands will be executed; if not, they will be skipped.

When comparing numbers, the actual values are compared. Leading zeros are disregarded.
Thus 0011 is greater than 2. When comparing characters, “greater than” is strictly accord-
ing to ASCII codes. See the ASCII table at the end of this manual for details. Thus, b is
greater than abc and a is greater than B or 1. CC attempts a numerical comparison first,
before it does a byte-for-byte ASCII comparison.

ifn(name) — IF SWITCH name IS NOT SET
This command is completely parallel to if except that it executes the commands and re-
placements following it if the switch is not set (is clear), and doesn’t execute it if the
switch is set.

ifneq(name) ‘string’ — IF name IS NOT EQUAL TO string
This command is like ifeq, except that the following commands and replacements are exe-
cuted if name is not equal to the string.

incl(name) — INCLUDE GROUP name
This command will include group name (see the group(name) command) with the
group(s) that CC is currently using. It can only be used on the right side of the wedge. This
table:

 begin > use(2,5,8,4)

will have the same effect as this table:

 begin > use(2,5,8)
 incl(4)

This command has the opposite effect of excl(name). Note that the specified group is

Consistent Changes User’s Guide 19

appended to the end of the list of groups that CC is using.

incr(name) — INCREMENT STORE name ONE COUNT
This command causes the last character of store name to be incremented by one so that it
becomes the next character on the ASCII chart. In the following example:

begin > store(zork) ’x’ incr(zork) out(zork)

the ‘x’ in store(zork) is incremented to be a ‘y’. This command can only be used on the
right side of the wedge.

Whenever CC tries to increment a character that doesn’t exist, it will create the character
“0” and then increment the “0” to “1.”

If the last character in the store is a “9,” then the next-to-last character in the store will be
incremented by one and the “9” will be changed to a zero. In the following example:

begin > store(alpha) ’A7’
 incr(alpha) incr(alpha) incr(alpha)
 out(alpha)

the output is “B0.” Had there only been a “7” in store(alpha), rather than “A7,” then CC

final result would have been “10.”

A common use of incr(name) is to count the number of occurrences of a certain character
or string in a file:

’x’ > dup incr(total) c count every x
endfile > out(total) endfile c output count

The above table will count every occurrence of x.

The incr command preserves leading zeros in a store. For example if store x contained
“0001,” it would contain “0002” after doing incr(x). Note that when doing comparisons
of stores with ifeq(), ifneq() and ifgt(), the leading zeros will be irrelevant because CC at-
tempts a numerical comparison of stores before it does a byte-for-byte ASCII comparison.

It should be noted that incr(x) is not absolutely identical to add(x) “1” . The incr(x) com-
mand will preserve leading zeros, the add(x) command will not. Also, incr(x) is allowed
on stores which contain non-numeric strings, whereas add(x) is not.

mod(name) ‘number’ — REMAINDER OF STORE name DIVIDED BY number
This command divides the value in the specified storage area by the value of number. The
remainder from the division operation is stored in name, replacing name’s previous con-
tents. For example, the following will output “7” :

begin > store(test) ’40’ endstore
 mod(test) ’11’
 out(test)

Since 40 divided by 11 is 3 with a remainder of 7, CC discards the 3 and stores the 7 in
storage area test. If there is no remainder, CC will store a 0 as the remainder. This com-
mand can only be used on the right side of the wedge.

20 Consistent Changes User’s Guide

mul(name) ‘number’ — MULTIPLY STORE name BY number
This command multiplies the value in the specified storage area by the value in number.
The results of the operation are stored in name, replacing name’s previous contents. For
example, the following will output “48” :

begin > store(1) ’4’ endstore
 mul(1) ’12’
 out(1)

This command can only be used on the right side of the wedge.

(name) — NAME OF STORAGE, SWITCH, GROUP, OR DEFINE
Any combination of printable characters (including numbers) can be used in the name to
designate specific switches, groups, defines or storage areas. The only exceptions are a
space and a comma. A comma is used as a separator for multiple designators. Letters are
case-sensitive. In other words, CC will treat store(NAME) and store(name) as two different
stores. The naming of each is totally independent of the naming of any of the others. (eg.
nothing happens to switch examp when something is stored in area examp.

Any command which takes a parenthesized string argument name may take more than one
string, separated by commas (i,j,k). This has the effect of repeating the command. For ex-
ample, to clear three storage areas, store(1) store(2) store(3) endstore is the same as
store(1,2,3) endstore. The only exception is the use command, in which use(1,2) makes
both group(1) and group(2) active, while use(1) use(2) makes only group(2) active.

next — USE REPLACEMENT IN NEXT ENTRY
This command executes the replacement side of the next search entry. This is useful when
a number of similar match-strings need the same change. It saves table space and makes
the table easier to read. For example:

’a’ > next c change all vowels to V
’e’ > next c and add one to vowel count
’i’ > next
’o’ > next
’u’ > ’V’ incr(vowel)

Commands and replacement strings may precede next on the replacement side, but any-
thing following the next command on that replacement is ignored.

See also the define and do commands.

nl — NEW LINE
If used on the left side of the wedge, nl matches an <ENTER> keyed in the input. If used on
the right side of the wedge, it has the effect of putting an <ENTER> into the output. Note
that this function is considered a character sequence (not a command) by such commands
as ifeq.

Note: You cannot put an <ENTER> between quotes. The only way to indicate an <ENTER>

is to use nl.

‘ ’ — NULL MATCH or REPLACEMENT
If used on the left side of the wedge, the null match will match when nothing else will.
Note that the following restriction must be observed to avoid putting the table into a loop:
When ‘ ’ is used on the left side of the wedge, you should put either a fwd(v) or an omit(v)

Consistent Changes User’s Guide 21

command or a use(name) command on the right side of the wedge so progress can be
made through the input (see the fwd(v), omit(v), and use(name) commands). Since ‘ ’
matches when the next character in the input file doesn’t match anything, that character
must be removed to allow the possibility of matching the next character. The commands
fwd(v) and omit(v) accomplish this. The use(name) command sends the program to a dif-
ferent set of matches, where the character might match. If the table uses a fwd or omit com-
mand on null match, then there should be a separate entry to look for endfile. For example:

’a’ > ’a’
endfile > endfile c protect against null
 c match at end of file
’’ > fwd(1) ’-’ c this puts a hyphen after
 c any char other than ’a’

The ‘ ’ is meaningless when used on the right side of the wedge. It is sometimes used,
however, to visually signify that nothing is being output. It is not necessary, but is helpful
to clarify what is happening. (Its absence does not save any table space.) Thus, the follow-
ing:

"a" > ’’ c get rid of every a
"b" > "c" c change every b to c

is the same as:

"a" > c get rid of every a
"b" > "c" c change b to c

omit(v) — OMIT v CHARACTERS FROM INPUT
This command causes the next v characters that would be input, to be discarded. These
characters will not be passed through the table to be matched nor put into output or stor-
age. This command can only be used on the right side of the wedge. Although v cannot be
greater than 127, as many as 300 characters may be omitted in sequence by using more
than one omit(v) command. Attempting to omit more than 300 characters will be regarded
as an error condition, and an appropriate message will be given.

out(name) — OUTPUT STORAGE AREA name
This command stops any storage in progress and sends the contents of storage area name
to the output. The contents of store(name) remain unchanged and may be output more
than once. Unless there is another store command, all results will then go to the actual out-
put. This command can only be used on the right side of the wedge.

The out command closes any storage area that may be open, and output continues to be
routed to the actual output after the command is executed.

outs(name) — OUTPUT STORE name EVEN WHILE STORING
This command is the same as the out command, except that it continues any storing al-
ready in progress. It can only be used on the right side of the wedge. This allows transfer
of material between storage areas.

For example, the following copies the contents of storage area 1 to storage area 2, and stor-
age area 2 remains open after the outs(1) command is executed:

22 Consistent Changes User’s Guide

store(2) outs(1)

Note that the content of storage area 1 does not change.

prec(name) — MATCH IF PRECEDED BY ANY CHARACTER IN STORE name
This function will cause the string to be matched only when that string is preceded by any
one of the characters contained in the specified storage area. This command can only be
used on the search side, between the match string and the wedge. Note that the character it-
self is not matched and will not be output by the dup command. The character is a condi-
tion of the match, not a part of the match.

This function is particularly convenient for matching strings which are required to be at
the beginning of a word; any character that may appear before a word such as a space, can
be stored in a particular storage area and used with prec(name) command. An example of
the prec command follows:

store(begin-word) ’ ’ nl ’<"([{’ endstore
’c’ prec(begin-word) > ’ch’

This would change any c that is preceded by a word-break character to the character se-
quence ch.

More than one prec(name) command (up to a maximum of 10) can be used in succession.
For example, ‘test’ prec(1,2,3) will look for test, preceded by something in storage area 3,
preceded by something in storage area 2, preceded by something in storage area 1.

Compare this with the commands wd(name), fol(name), and any(name).

read — READ FROM KEYBOARD
This command reads a line from the keyboard into the current store if storing, or directly
into output. It can only be used on the right side of the wedge. CC stops reading characters
from the keyboard when the <ENTER> key is pressed. The <ENTER> is simply a signal to
the read command to stop reading characters from the keyboard; the <ENTER> does not ac-
tually go to the storage area or output.

Prior to issuing a read command, it would be advisable to use the write command to write
a message on the screen so that the person at the keyboard would realize that the computer
has paused and is waiting for input from the keyboard.

repeat — REPEAT FROM begin
This command goes back to the nearest begin. This command can only be used on the
right side of the wedge. For example:

Consistent Changes User’s Guide 23

 c This table fills short lines with the letter x
 c until all lines have sixty characters
begin > caseless
 store(char) ’ abcdefghijklmnopqrstuvwxyz,.?!’
 store(count) ’0’ endstore

any(char) > dup incr(count)
nl > ifgt(count) ’59’
 begin
 ’**** ERROR count 60 or greater ***’ nl
 end
 else
 begin
 incr(count) c Increment count
 ’x’ c and output an x
 ifneq(count) ’60’ c If count not sixty,
 repeat c go back to begin
 endif
 store(count) ’0’ endstore
 nl c restore count and output newline
 end
 endif

Be careful when using the repeat command. In this example we checked first to make sure
that the count was less than 60 before starting the repeat command. If, for some reason the
count was 60 or greater when we encountered a newline, the program would hang up in an
endless loop. Always check whatever is being used to control the repeat command to
make sure that it is set properly before beginning the repeat loop.

It may be easier to run CC twice (pass the data through two different change tables) than
make a complex table to do everything in just one pass.

set(name) — SET SWITCH name
This command sets a switch or flag which you can check (using if commands) for condi-
tional execution of table entries. It can only be used on the right side of the wedge. You
may use up to 127 switches, distinguishing them by using different names. Whatever num-
ber or name you use when you set it for the first time is what you must use when you sub-
sequently clear or test the flag.

A switch can be “ turned off” by using the clear command. All switches are initially clear
(not set).

store(name) — STORE IN STORAGE AREA name
This command re-routes the output to an internal storage area. It can only be used on the
right side of the wedge. You may have up to 127 storage areas, distinguishing them by us-
ing different names. Whatever you call the storage area in the store(name) command is
what you must use when you subsequently output its contents (see the append, out, and
outs command as well as description of name).

Any data previously stored in the specified area is discarded when a new request to store
is given, and any storage being done in another area is stopped.

Storage areas can only be cleared by a store command followed immediately by an

24 Consistent Changes User’s Guide

endstore, out, or another store command.

Note that if multiple stores are requested at once, the effect will be to erase and close each
until the last, which will be cleared, but remain open to be stored into. The following three
lines are equivalent to each other:

’x’ > store(1,2,3)
’x’ > store(1) store(2) store(3)
’x’ > store(1) endstore store(2) endstore store(3)

sub(name) ‘number’ — SUBTRACT number FROM STORE name
This command subtracts the value specified by number from the value in the storage area
name. It can only be used on the right side of the wedge. The difference is stored in name,
replacing name’s previous contents. For example, the following will output “3” :

begin > store(value) ’17’ endstore
 sub(value) ’14’
 out(value)

use(name) — USE CHANGES IN GROUP name
This command specifies which groups of changes are currently available to be matched
(see the group(name) command). Any previous use(name) command is cancelled. This
command can only be used on the right side of the wedge. If use(x) is specified, then the
changes in group(y) are ignored. For example:

group(def)
’\w’ > dup use(word) c change a to aa following
’a’ > ’aa’ c a \d but not following
group(word) c a \w marker
’\d’ > dup use(def)

Several groups can be made available for searching at the same time. For example,
use(1,6,8,4) causes groups 1, 6, 8 and 4 to be searched in that order. Although up to 127
groups can exist in a table, you can use no more than 25 of them at one time. The groups
will be searched in the order they are specified in the use command. The use(name) com-
mands do not take effect until the end of the entry in which they were specified.

wd(name) — MATCH ONLY IF WORD
This command causes a string to be considered matched only if it is both preceded and fol-
lowed by any character contained in storage area name. Note that the preceding and fol-
lowing characters are not considered part of the match and would not be output by a dup
command. For example, the following table:

begin > store(punct) nl ’ .,"()’ endstore
’and’ wd(punct) > ’also’

will change any of the following:

and and. and, and" and(and) and<ENTER>
 and .and ,and "and (and)and <ENTER>and

This command is used only on the search side of the table, just before the wedge.

Consistent Changes User’s Guide 25

Note: When storing the word boundary punctuation, do not include any diacritics. Also
keep in mind that there is a small gain in speed if the most frequently used characters are
listed first.

write ‘string’ — WRITE string TO SCREEN
This command writes on the screen the contents of the string. A string is any combination
of literal strings, nl commands, and ASCII characters (such as 10 for backspace). This com-
mand can only be used on the right side of the wedge. The string is terminated by the fol-
lowing command or next search entry. It may contain nls and multiple lines. For example:

’cat’ > write nl ’cat found’ nl
’bird’ > write nl ’feathered friend found’ nl dup

When ‘cat’ is matched the program writes the message ‘cat found’ on the screen. The
screen message is terminated by the next search entry. When ‘bird’ is matched the pro-
gram writes the message ‘feathered friend found’ on the screen. The screen message is ter-
minated by the dup command and ‘bird’ is written to the output, but not to the screen.

wrstore(name) — WRITE STORAGE AREA name TO SCREEN
This command writes on the screen the contents of store name. It can only be used on the
right side of the wedge. Combining the example under write with the example under
incr(name), if a count of every x was kept in storage area count, the total could be printed
to the screen as follows:

endfile > write ’There were ’
 wrstore(count) write " occurrences of x" nl
 endfile

3.5 I/O Options
When you type CC at the DOS prompt, CC will ask for the name of your:

Changes file?

After you provide the name of your change table and press <ENTER>, CC will ask for the
name of your:

Output file?

It is in response to these questions that these I/O options may be used:

/b BACKUP TO PREVIOUS QUESTION
This command, in response to any question other than “Next input,” will cause the pro-
gram to re-ask the previous question.

/c COMPILE TABLE
This option will cause CC to compile the table rather than to run the table. It is used after
your filename in response to the question, “Changes file?”

Changes file? mytable.cct/c

If you use the /c option, CC will not ask you for an input file name or an output file name.
It will instead ask you for the name it should give to your compiled table that it is about to
create:

26 Consistent Changes User’s Guide

Compiled table file?

A compiled table is very compact, usually only a few blocks. This can save table loading
time for frequently run tables. The recommended file extension for a compiled table is
.CCC.

/d DEBUG
This option gives the number of changes and characters in the table, and gives a display of
text before and after the changes.

NOTE: This mode will not display properly unless the screen driver, ANSI.SYS is invoked in
your CONFIG.SYS at boot up.

The debug option is used after the filename in response to the question, “Changes file?”

Changes file? mytable.cct/d

The debug option shows the content of the current storage area, any switches on, and the
numbers of the current groups.

When you use the debug option you will see a listing of all the stores, switches, and
groups used in your change table, before the request for the output file. You will see both
a number and a name for each. The number is significant for when you are running CC

without the debug option, because all error messages will reference items by number
rather than name. The only way to find which name in your table is referenced by a num-
ber is to run CC with the debug option.

After you have entered your output and input filenames CC will begin running in the de-
bug mode. CC will stop at the first match and show you the following:

Store name contains: [contents of current store before match]

A line of text showing 35 characters of the “output” text and 35 characters of the
“ input” text with the matched characters in reverse video

A line of text showing the data after the entire right side of the match is completed

Active groups: name, name, name . . . (active groups after match is completed)

Switches set: name, name, name . . . (switches that are set after match is com-
pleted)

Store name contains: [contents of current store after the match is completed]

A store is shown only if it is currently being stored into. Other stores not shown may also
contain data.

In the display of the store contents and the match line, a nl character will be displayed as
character that looks like a backwards F. The symbol for “end of file” will be a solid
block. Other control characters in the data can mess up the screen display.

If more characters are in a store than will fit on one line of the screen, an automatic line
wrap is performed.

A null match can be recognized because no characters are in reverse video in the match
line.

Consistent Changes User’s Guide 27

Switches and groups are shown only once because they cannot change between the end of
one entry and the beginning of the next. Store contents are shown twice because they can
change between matches.

There is no way to display what happens within a replacement, except by seeing the evi-
dence of before and after.

The debug feature of CC starts up in a ‘single-step’ mode. Simply press a key to go on to
the next step. If you want to run steps continuously, press <ESCAPE>. Pressing any key
will stop the debugger and resume single step mode.

/o NEW OUTPUT FILE
If a /o is typed instead of a file name at the “Next Input” question, the program reprompts
for new input and output files after finishing and closing the file currently being output.
The same change table will remain in effect, but will be restarted from the begin state-
ment, as if it had just been loaded. This allows running various files through the same
change table without reloading the table every time.

/r RERUN PROGRAM
If a /r is typed instead of a file name at the “Next Input” question, the program will return
to the beginning of the program, after finishing and closing the file being output. This al-
lows the user to use various change tables without having to return to the DOS prompt.

/t WAIT FOR INPUT
You should never need to use this option. It is outdated and documented here only for the
sake of completeness. If a /t is typed after the file name at the “Next Input” question, the
program will type the message:

Waiting for filename: Type <RETURN> to continue?

and wait for an <ENTER> before looking up the file.

/w WAIT FOR SYSTEM
You should never need to use this option. It is outdated and documented here only for the
sake of completeness. If a /w is typed after the table name at the “Changes file” question,
the program will indicate when the disk may be removed and when to restore it.

3.6 Running CC from the Command Line
When you type CC at the DOS prompt, CC asks you a series of questions, such as Changes
file?, Output file?, Input file?, etc. You can avoid having to answer all these questions by
including your answers when you type CC. Note that the following two examples will pro-
vide the same results:

28 Consistent Changes User’s Guide

--
C:\>cc
Consistent Changes 7.4, 15-May-90 Copyright 1987-1990 SIL
Inc.
Changes file? test.cct
Output file? test.out
Input file? test.txt
Next input file (<RETURN> if no more)? <ENTER>

C:\>
--
C:\>cc -t test.cct -o test.out test.txt
Consistent Changes 7.4 15-May-90 Copyright
1987-1990 SIL Inc.

C:\>
--

In the second example, the -t indicates that the table name will follow and -o indicates that
the output file name will follow. These must be typed in this order, the same order CC

would ask you for the file names if you were not working from the command line. In
place of the input file name you can use a -i to indicate a file containing a list of input file
names. There will only be one output file, however. See I/O options for more information
on commands that can be entered along with the file names.

The only thing to remember is that the output file name is preceded by a -o, the change ta-
ble is preceded by a -t, and the input file name doesn’t get preceded by anything. In fact,
you don’t even have to remember this! If you type CC? at the DOS prompt, CC will display
a list of which “ -” goes with which file name!

Summary of CC Command Line Options
-t Change Table name; if compiling, this is the name of the uncompiled file; if running a
change table, it can be either an uncompiled or compiled change table

-o Output file or device

-i Name of file containing a list of input files

This file can be created with the SIL Editor or any other word processor provided the
output is unformatted (plain ASCII). In the list each file name is followed by a
<RETURN> as in this example:

matthew.scr
mark.scr
luke.scr
john.scr
acts.scr

-m Ask “Next input” question; when running from the command line. The default is to
not ask the question when running from the command line. When running with CC

prompts, the program will ask for “Next input” after processing each file.

-s Compiled table name; used only when compiling

Consistent Changes User’s Guide 29

Chapter 4 Advanced Features

4.1 Storage Commands
There are five commands directly connected with the storage feature of the CC program:

store(name)
append(name)
endstore
out(name)
outs(name)

Some secondary commands which use storage areas, but which are not described in this
section, are:

add(name) ifgt(name)
any(name) incl(name)
cont(name) incr(name)
div(name) mul(name)
excl(name) prec(name)
fol(name) sub(name)
ifeq(name) wd(name)
ifneq(name) wrstore(name)

More information on these can be found in section 3.4

The expression (name) represents any logical name you choose. In older versions of CC

only numbers could be used to identify stores and groups, etc. The logical name feature
has been included since version 7.2B. A logical name can consist of alphabetic characters
or numbers, and cannot include spaces, commas or a right parenthesis. The names can be
any length. The names are case sensitive, so store(cat) and store(Cat) would refer to dif-
ferent stores. There is a program limit of 127 different stores. These rules also apply to the
names for groups, switches, and defines.

What store(name) Does
When the store(name) command is encountered, the storage area assigned to that name is
first cleaned out —any data stored there previous to encountering the store(name) is dis-
carded, without warning. Before using the store(name) command, be sure you do not need
anything that may be in the storage area. Now rather than send data to the normal output,
the data is sent to the temporay store area. Data will continue to be stored in this area until
the program encounters another command that affects storage (append, endstore, out, or
outs).

If storage had been requested to one area (name1), but it is now requested to a different
area (name2), the output is diverted to the second area and no longer goes into the first.
Only one storage area at a time accepts data.

What append(name) Does
The append(name) command is quite similar to the store(name) command, except the
store(name) command causes the previous contents of area (name) to be discarded. The
append(name) command retains the previous contents and inserts the new data into the
storage area following any data that already was in that storage area.

What endstore Does
When an endstore command is encountered, any storage that was going on is stopped and

30 Consistent Changes User’s Guide

output is directed to the normal output, as it does when storage is not requested. Data that
is currently in storage will remain there until the program encounters a command (store,
append, out, or outs) naming that area. Note that no name is required for the endstore com-
mand.

By the way, if you want to deliberately clear out the contents of a storage area, the combi-
nation of commands store(name) endstore will clear it out without affecting output at all.

What out(name) Does
When out(name) is encountered, two things happen. First, if storage is being done, it is
stopped as if an endstore had been encountered. Second, the contents of storage area
(name) are sent to the output file. Note that no matches are performed; the contents of the
storage area do not pass through the change table. Also note that storage area (name) is
not cleared out; it still contains what it contained before the out(name) was encountered.
Storage area (name) may be output any number of times. If there is nothing in the storage
area, nothing is output.

What outs(name) Does
The outs(name) command is very similar to the out(name) command except the
outs(name) command does not stop storing. This provides a way to transfer data from one
storage area to another. This applies whether storing is being done with the store(name)
command or with the append(name) command. For example, to copy the contents of
store(first) to store(second), use the command store(second) outs(first) endstore.

To put the contents of storage areas first, second, and third all together into area four:

store(four) outs(first) outs(second) outs(third) endstore

or

store(four) outs(first,second,third) endstore

An Example of Storage
The storage feature has a number of uses. Frequently it is used when the user wants the
output in a different order than the input order. The following example illustrates the use
of storage in a simple dictionary reversal.

Let’s suppose that you had a huge text file that was a bilingual dictionary that a Spanish
speaker would use to find the meaning of English words. A text file for such a dictionary
might be keyed in with each line preceded by a Standard Format marker as follows:

 \w word in English
 \p part of speech in Spanish
 \d definition in Spanish
 \i illustrative sentence in English
 \t translation of illustrative sentence in Spanish

Let’s suppose now that you wanted a dictionary that would go the other way, to allow an
English speaker to find the meaning of Spanish words. We could use the first dictionary as
a basis for our new dictionary, creating a CC table to rearrange things for us.

Consistent Changes User’s Guide 31

Sample of Input (before): Desired Output (after):

 \w cat \w gato
 \p n \p n
 \d gato \d cat
 \i The cat is black. \i El gato es negro.
 \t El gato es negro. \t The cat is black.

Note that the word and definition “changed places,” as did the illustrative sentence and its
translation. (For the moment, we will not deal with the fact that different abbreviations
would probably be used for the part of speech —we are interested in the process of the re-
versal.) The following table is what is needed for a reversal.

--

 "\w " > out(def,part,word,trans,ill)
 c output reversed entry
 store(trans,ill,def,part,word)
 c clear storage areas
 c and store entry word
 "\d " c mark word as definition

 "\p " > store(part) "\p " c keep as part of speech
 "\d " > store(def) "\w " c mark def. as entry word
 "\i " > store(ill) "\t " c mark illus. as
 c translation
 "\t " > store(trans) "\i " c translation as
 c illustration.

 endfile > out(def,part,word,trans,ill)
 endfile c output last entry
--

What does this say? It is easier to understand if we look at it in pieces.

Conceptually, the first thing to do is to store everything that comes in, in different storage
areas. If you look closely, you will see the following in the above table, among other
things.

"\w " > store(word) c store entry word
"\p " > store(part) c store part of speech
"\d " > store(def) c store definition
"\i " > store(ill) c store illustrative sentence
"\t " > store(trans) c store translation

The data comes in and the \w is found. Storage area (word) is requested. Data that follows
passes through the table unchanged. However, it does not go to the output file; it is sent
into storage area (word). When the \p comes through, it matches and storage area (part) is
requested. Data that follows is sent into storage area (part), and so forth.

Soon a \w is found again, and that is where some of the other commands in the table really
take effect. Let’s look more closely at the \w entry, as it really is in the table.

32 Consistent Changes User’s Guide

"\w " > out(def,part,word,trans,ill)
 c output reversed entry
 store(trans,ill,def,part,word)
 c clear storage areas
 c and store entry word
 "\d " c mark word as definition

The first line of it:
"\w " > out(def,part,word,trans,ill)
 c output reversed entry

says to stop any storing that may be being done, and to output the data in the storage areas
in the order: def, part, word, trans, ill . As you may recall, the definition was stored in area
(def). That is output first. The part of speech is in storage area (part) and it is output sec-
ond. The main entry word is in storage area (word) and it is output third. And so forth.
Comparing this to the desired output, it is indeed what is wanted. The next line:

store(trans,ill,def,part,word) c clear storage areas
 c and store entry word

is a bit more obscure. It is perhaps easier if we look at an equivalent set of commands:

store(trans) store(ill) store(def) store(part) store(word)

This has exactly the same effect as store(trans,ill,def,part,word). Requesting storage into
an area causes its current contents to be discarded. If another storage area is immediately
requested, nothing is stored in the first. Thus, the command store(trans) says, “stop stor-
ing any place else, erase anything that might be in storage area (trans) and begin storing
something new there.” This is immediately followed by store(ill) which says, “stop stor-
ing any place else, erase anything that might be in storage area (ill) and begin storing
something new there.” What happened? The effect was to erase anything in storage area
(trans) without putting anything new there. Similarly, since the command store(def) fol-
lows immediately, storage area (ill) has been erased and nothing new put there. This con-
tinues until at last the store(word) command is encountered. By the way, we could have
said:

store(trans) endstore
store(ill) endstore
store(def) endstore
store(part) endstore
store(word) endstore
store(word)

This would have had the same effect as store(trans,ill,def,part,word).

Since no other store or endstore command follows the store(word) command, something
actually can be stored in area (word). And, in fact, that happens immediately. The line:

"\d " c mark word as definition

will be stored in area (word).

Consistent Changes User’s Guide 33

In general, this is what is happening:

"\w " > "\d "
"\p " > "\p "
"\d " > "\w "
"\i " > "\t "
"\t " > "\i "

If you compare the Sample of Input with the Desired Output, you will notice that the
markers change. What was marked as the main entry word is now marked as the defini-
tion, and vice versa. This type of changing is one of the most basic features of the Consis-
tent Change program. A sequence of characters is matched and is replaced by another
sequence of characters.

Putting the marker changes together with the storage, the table has:

"\w " > store(word) "\d " c mark word as definition
"\p " > store(part) "\p " c keep as part of speech
"\d " > store(def) "\w " c mark def. as entry word
"\i " > store(ill) "\t " c mark illus. as
 c translation
"\t " > store(trans) "\i " c mark translation as
 c illustration

The entry word “cat” goes into storage area word. The new marker “ \d” should go there
too —before the word “cat” does— just as the old marker “ \w” was before the word
“cat.” Thus, the new marker should be the first thing stored in the storage area. In order
for \d to be stored, it must follow the store command, not precede it. Because the \d fol-
lows the store(word), it is stored immediately in area word. Then the end of the command
is encountered. The rest of the data between the “ \w” and the “ \p cat” is not changed be-
cause it matches nothing in the table. It would have gone to the output file, but because
storage has been requested, it goes into storage area word —where the \d already is. When
the “ \p” is encountered, the change table calls for storage to be switched to area part.
Then the “ \p” is “changed” to “ \p,” and sent to storage area part. The same process is
followed for the other parts of the data.

How can we tell when we have stored all there is of a given entry and that we are starting
a new word in the dictionary? —when we get to the beginning of the next entry. That is
why the out command is at the beginning of the “ \w” entry. Another way to know that we
have just finished storing a given entry is when we reach the end of the input file. In the
following part of the table, the endfile on the left of the wedge means “Do this when we
get to the end of the input file:”

endfile > out(def,part,word,trans,ill) c output last
 c entry
 endfile

The command endfile means: at the very end of the data, when everything has been
looked at, but before the program stops, to output the last reversed entry, just like the
“ \w” entry in the table does —but there won’t be another “ \w” coming. Notice that after
the entry is output, there is another endfile command. That is the only way to tell the pro-
gram that it is done. The endfile on the left of the wedge catches the end of file mark in
the data. The endfile on the right side tells the program to send an end of file mark to the
output file, close the output file, stop processing and return to the DOS prompt. If we don’t
send it back out, the output file will never be closed and the program will never end!

34 Consistent Changes User’s Guide

There are a few other comments that need to be made about the table. For convenience it
is reproduced below:

"\w " > out(def,part,word,trans,ill)
 c output reversed entry
 store(trans,ill,def,part,word)
 c clear storage areas
 c and store entry word
 "\d " c mark word as definition
"\p " > store(part) "\p " c keep as part of speech
"\d " > store(def) "\w " c mark def. as entry word
"\i " > store(ill) "\t " c mark illus. as
 c translation
"\t " > store(trans) "\i " c mark translation as
 c illustration
endfile > out(def,part,word,trans,ill)
 endfile c output last entry

When the first “ \w” is encountered, the program executes the out(def,part,word,trans,ill)
command. This is no problem, because when nothing is stored in a storage area, nothing is
output.

There is no problem if, for example, some entries do not have illustrative sentences or a
part of speech. Why? At the beginning of each new entry, all the storage areas are com-
pletely erased. Nothing is stored in an area unless the marker for that area is found in the
data. Thus, the following input would produce the following output:

 input output

 \w cat \w gato
 \p n \p n
 \d gato \d cat
 \i The cat is black. \i El gato es negro.
 \t El gato es negro. \t The cat is black.
 \w dog \w perro
 \p n \p n
 \d perro \d dog
 \w mouse \w raton
 \p n \p n
 \d raton \d mouse
 . .
 . .
 . .

If we had not used the store(trans,ill,def,part,word) command to erase the storage areas,
the illustrative sentences for the “ \w cat” entry would also have been printed out with the
“dog/perro” entry and following entries, until a new set of illustrative sentences in the in-
put was encountered. Whenever you see such results, you can be sure that some storage
area has not been cleared.

To get rid of blank lines before entries, add the following:

nl "\w" > next

just before the “ \w” entry as it is. To output blank lines, modify the “ \d” entry to read:

Consistent Changes User’s Guide 35

"\d" > store(def) nl "\w"

This will put a blank line in front of the very first record, but that should not be a problem.

Another way of dealing with blank lines is described in section 4.2.

4.2 The Back Command
The command back(v) pulls back the previous number of characters which were stored or
output and treats them as if they were new input.

One of the main difficulties in writing a general change table is trying to anticipate all the
irregular typing sequences — both legitimate variations as well as “errors” — which oc-
cur in any manuscript.

An often-encountered problem is that of extra spaces or <ENTER>s. These occur in various
combinations and in varying numbers. Often in a printout, it is desirable that a sequence
of spaces be treated like one. (There are exceptions, of course.) Without the back com-
mand there is no way to effectively do so.

The following command line causes any sequence of spaces to become one space:
" " > " " back(1)

This says, “ if there are two spaces, put out one instead; then put that one character back
into the input so that it is available to be matched again in the table.” Keep in mind that
the “1” in back(1) does not refer to a storage area, but to the quantity of characters to be
moved back. See section 3.4 for more information on the back command.

If the space is followed by another space —ie, if there were originally three spaces in a
row— then the space that was output and backed over, plus the space following, will be a
pair of spaces which will match the entry above and be reduced to one space. This will
continue for however many spaces occur together. Finally just one space will be left.

Another place stray spaces occur is at the ends of lines. The automatic wrap feature of
various edit programs removes such spaces, but people still manage to get a few. The fol-
lowing command will remove a space that precedes an <ENTER>. (Multiple spaces preced-
ing the <ENTER> will have been reduced to one by the command described earlier.)

" " nl > nl back(1)

This says, “ if a space immediately preceding a new line is matched, output a new line;
then back up so the new line is treated like input and is available to be matched again in
the table.”

Yet another source of multiple spaces in printouts is blank lines —multiple <ENTER>s. The
following command takes care of blank lines in the same way multiple spaces are taken
care of.

nl nl > nl back(1)

And the following command removes spaces from the beginnings of lines, just as a pre-
vious one removed them from the ends:

36 Consistent Changes User’s Guide

nl " " > nl back(1)

Together these four force any sequence of spaces to be treated like a single space, and any
combination of spaces and <ENTER>s to be treated like a single <ENTER>.

But that is only one aspect of the difficulties needing to be dealt with. It is not uncommon
to find text files that include Standard Format markers. These markers most commonly
take the form of a “ \” followed by a lower case character and then a space character.
Markers are put in by the person editing the file so that the file can be manipulated later
by utility programs (such as CC). People are encouraged to put the Standard Format mark-
ers at the left margin because it makes proofing and editing easier. But sometimes they
don’t. It would be a simple matter to write a change table that put each “ \” on a new line.
It would be as follows:

"\" > nl "\"

That would work fine, but what if the “ \” was part of something else that we wanted to
match (like a “ \w,” for instance)? The “ \” has already gone sailing past and been output.
The back(v) command can help us because it can take characters which have gone “sail-
ing past” the table and put then back into the input file as if they’ve never come through
the table yet.

In the following change table, the first line will catch each “ \” that is preceded by an <EN-

TER> (as Standard Markers ought to be) so that they won’t be changed. The second and
third lines will catch each “ \” that isn’t preceded by an <ENTER>, and put an <ENTER> in
front of it. There could be a potential problem with the third line, however.

nl "\" > dup c Don’t add nl to "\" if not needed!
" \" > nl "\" back(2)
"\" > nl "\" back(2) c This line is dangerous

The danger of the third line is that the program could be caught in a loop. Once the “ \” is
matched, an <ENTER> is put in front of it, and it is sent through the table again. It would
again match at the backslash if the first line of the table had not been included, or if we
had said back(1) instead of back(2). An <ENTER> would again be put in front of it and it
would be sent through the table again... and again... and again...

How can such a thing be prevented? In this case we have included the first line and
back(2) so there will be no problem with the program getting caught in a loop. This is the
most obvious way, turning what is to be backed over into something completely different
so that no piece of it will match at the same place again. But that isn’t always desirable.

The second way is to be sure to include something to catch the repetitions, such as a
switch. (See section 4.4.) For example, the line could have been:

"\" > ifn(checked) set(checked) nl "\" back(2)
 else "\" clear(checked)
 endif

It would catch itself when it attempted to send the same backslash through for a second
time, thus preventing the loop.

Another solution, sometimes a better one, is to catch the output of that dangerous entry

Consistent Changes User’s Guide 37

(that might cause the program to go into a loop) and do something else with it. The lines:

nl "\" > dup
"\" > nl "***ERROR***" nl "\"

can be placed in the table. If a “ \” is not at the beginning of a line, the second entry would
catch it, and draw attention to it in the output file for later correction, rather than try to fix
it, back it into the input file, and match it again.

4.3 Groups
There are two commands associated with the group function. They are:

group(name)
use(name)

These commands allow certain entries in the table to be available to be matched while oth-
ers are not.

What group(name) Does
This command is not used as part of a “search” > “ replace” entry. Rather, it is used on a
line all by itself to mark the beginning of a “group” of changes. The changes in this group
can be executed as if they were the only changes in the table. The end of the group is
marked by either the end of the table, or another group command.

What use(name) Does
Whenever more than one group is used, each must be appropriately designated by a group
command. Unless specified otherwise, the program will start in group(1), (or in the first
group whose name begins with a ‘1’!). If numbers are not being used for group names, the
program will start in the first group in the table. To begin in some other place, the use
command must appear in the begin entry. For example:

begin > use(2)

Although the above example specified group(2) as the place to start, any group in the ta-
ble could have been specified.

The use(name) command can also be used to make a different group or set of groups ac-
tive during processing. The name argument tells CC which group or groups of changes to
use from that point on, unless it finds another use command. You should put use(name)
only on the right side of the wedge. Note that when CC encounters a use command, it fin-
ishes the entry which contains it; use(name) does not constitute an exit from the entry.

Example of the group and use commands
In a bilingual dictionary, one might wish to make certain changes in the orthography of
one language without doing anything to the other language. Let’s suppose that you had a
huge text file that was a bilingual dictionary, one that a Spanish speaker would use to find
the meaning of English words. A text file for such a dictionary might be keyed in with
each line preceded by a Standard Format marker as follows:

38 Consistent Changes User’s Guide

 \w word in English
 \p part of speech in Spanish
 \d definition in Spanish
 \q qualifying comment in Spanish
 \i illustrative sentence in English
 \t translation of illustrative sentence in Spanish

And suppose the orthography change is to be in the English language. Such a change
would affect the \w and \i parts of the entry, but not the \p, \d, \q, or \t parts.

There are two ways, at least, to approach this problem. One way is to use switches. (See
Section 4.4.) Another is to use groups. Consider the following table:

c Do orthography change for the \w and \i fields

begin > caseless
group(1)
’\w ’ > dup use(2) c Go to group two, where the
’\i ’ > dup use(2) c change occurs

group(2)
’kw’ > ’qu’ c Change kw to qu for \w and \i
’\p ’ > dup use(1) c Don’t change these fields, go
’\d ’ > dup use(1) c back to group one, where
’\q ’ > dup use(1) c nothing happens to kw.
’\t ’ > dup use(1)

What does this table say? First the line:

group(1)

identifies the beginning of a group. It tells the program that the following changes belong
to a group called (1). Unless it is told otherwise, the program will always begin using the
changes in group one when the program begins. The lines:

’\w ’ > dup use(2) c Go to group two, where the
’\i ’ > dup use(2) c change occurs

tell the program that whenever it sees a \w or a \i while it is inside group(1), that it should
duplicate what it has matched (dup command) and go use the changes that are in group
two. The next line:

group(2)

identifies the beginning of the second group of changes. Inside this group, that is, follow-
ing the group command, are the changes, such as:

’kw’ > ’qu’ c Change kw to qu for \w and \i

These are the orthography changes that we want performed on the data in the \w and \i
fields. That is why those markers requested group(2). They are not all that is in group(2),
however. The lines:

Consistent Changes User’s Guide 39

’\p ’ > dup use(1) c Don’t change these fields, go
’\d ’ > dup use(1) c back to group one, where
’\q ’ > dup use(1) c nothing happens to kw.
’\t ’ > dup use(1)

catch all the other markers in the dictionary. They send them back to the first group.
There, the data following them passes to the output file without any change in “kw” or
“Kw” , if that combination of letters happens to occur.

4.4 Switches

4.4.1 Introduction
The concept behind using switches is one that is familiar to everyone. The problem is that
the concept is not usually formalized.

Consider the following statements:

– If it doesn’t rain this morning, I’ll water the lawn this evening.

– If we have hamburgers this noon, I’ll make pork chops for supper; otherwise I’ll fix
hamburgers.

– If the gate is left open, the dog will run away.

– If we don’t get some gas now, we’ll run out.

– If George forgets to pick up the groceries on his way home from work, we’ll have pork
and beans for supper.

Each of these embodies the concept of a switch. If something has or has not happened:
– it rains
– we eat hamburgers
– the gate is left open
– we buy gas
– George remembers the groceries

certain consequences follow or do not follow:
– I water the lawn
– we have pork chops
– the dog runs away
– we run out of gas
– we eat pork and beans

The “something” that leads to the consequences is the condition. Sometimes the conse-
quences follow if the condition occurs:

– If we have hamburgers this noon, I’ll make pork chops for supper...

Sometimes the consequences follow if the condition does not occur:

– If it doesn’t rain this morning, I’ll water the lawn this evening.

40 Consistent Changes User’s Guide

Of course, something happens whether the condition is met or not. If nothing else the con-
sequences fail to occur:
– I don’t water the lawn
– The dog doesn’t run away
– We don’t run out of gas

Sometimes there are alternate consequences:
– I fix hamburgers
– We eat something other than pork and beans

The five statements above can be semi-formalized as follows.

If not (rain in the morning) I will water the lawn this evening.

If (we have hamburgers at noon) we will have pork chops for supper
else we will have hamburgers for supper.

If (the gate is left open) the dog will run away.

If not (fill the car with gas) we will run out of gas.

If not (George remembers the groceries) we will have pork and beans for supper.

In each case, the parenthesized condition can be regarded as a switch. Switches have only
two states: these are called on or off (or true or false; or set or clear).

A switch by itself doesn’t necessarily do anything. The lack of morning rain does not
always result in the lawn being watered. I have to decide that circumstances warrant the
lawn being watered. Once that decision is made, then I look about for any conditions that
would affect my decision: If it rains, I won’t need to water lawn. Later, I check that condi-
tion (or switch). Did it happen? (Is the switch set?) Then I proceed accordingly.

The nature of a switch, and its particular value, is that it allows something that happened
(or didn’t happen) in the past to be taken into account for a decision in the present.

For people, remembering the past is no amazing feat; for a computer, remembering the
past must be done deliberately. Hence, computers use formal switches. Actually, all of the
computer’s “memory” is an elaborate array of switches controlled by other switches
which are controlled by a program which is a bunch of switches controlled by the data—
which sets and clears switches. Fortunately, we need not worry about all these levels upon
levels of switch setting and testing. But it is nice to be able to control some levels of it.
This allows us to do innovative things with the data.

4.4.2 What the Commands Do
What types of switches are available in the CC program? How are they used?

There are several commands connected with the switch feature of the CC program:

Consistent Changes User’s Guide 41

set(name)
clear(name)
if(name)
ifn(name)
endif
else

The (name) represents the name of the switch. There can be up to 127 of these in a single
table. Other commands may use the same names, but there is no relationship between the
names for switches and any other names. Note that the following commands:

ifeq(name) ’string’
ifneq(name) ’string’
ifgt(name) ’string’

use the same concept of a switch, but the names refer to storage areas, not to switch
names. These commands are not described here, but in section 3.4. Do not confuse them
with the first list of commands, some of which look very similar.

Keep in mind as you read that the terms set, on, or true are used synonymously with one
another. The terms clear, off, or false are also used synonymously with one another.

What set(name) does
The command set(name) causes switch (name) to be in the on or true state. Switch (name)
will remain set until explicitly cleared. Hence it can be used for reference later as a re-
minder or signal of what has gone before. The switch is cancelled by the clear(name) com-
mand. When the table first starts running, all switches are clear, or off.

What clear(name) does.
The command clear(name) causes switch (name) to be in the off or false state. Switch
(name) will remain off until explicitly set. When the CC program is started and before any
table entries are executed, all switches are cleared, or turned off.

What if(name) does
The command if(name) checks to see if switch (name) is set. If it is set, the commands fol-
lowing the if are executed. If it is not set, the commands following the if are not executed
(are skipped). This allows commands to be executed only if a certain condition exists.

What ifn(name) does
The command ifn(name)—which is read “ if not (name)” — checks to see if switch
(name) is not set. If it is not set, the commands following the ifn ARE executed. If the
switch is set, the commands following the ifn are SKIPPED. This allows commands to be
executed only if a certain condition does not exist.

What endif does
The command endif puts a boundary on the if or ifn command. If the switch was such that
the commands following the if or ifn were being skipped, execution of commands will be-
gin again at the endif regardless of the setting of any previous switches. (Of course, an-
other if or ifn may be encountered immediately after the endif which would again take into
account switch settings.) If the commands following the if or ifn are being executed, the
endif has no effect; execution continues.

42 Consistent Changes User’s Guide

What else does
If switch conditions are such that commands following the most recent if or ifn are being
executed, the else command causes the commands following itself to be skipped. If the
commands following the if or ifn are being skipped, the else command causes the com-
mands following itself to be executed.

In the following example:

"a" > if(test) "a" else "b" endif

If switch (test) is set, a will go to the output. If switch (test) is not set, b will go to the out-
put. The same result could have been achieved by:

"a" > if(test) "a" endif
 ifn(test) "b" endif

An Example Using Switches
For example, in a bilingual dictionary, one might wish to make certain changes in the or-
thography of one language without doing anything to the other language. Let’s suppose
that you had a huge text file that was a bilingual dictionary that a Spanish speaker would
use to find the meaning of English words. A text file for such a dictionary might be keyed
in with each line preceded by a Standard Format marker as follows:

 \w word in English
 \p part of speech in Spanish
 \d definition in Spanish
 \q qualifying comment in Spanish
 \i illustrative sentence in English
 \t translation of illustrative sentence in Spanish

And suppose the orthography change is to be in the English language. Such a change
would affect the \w and \i parts of the entry, but not the \p, \d, \q, or \t parts.

There are two ways, at least, to approach this problem. One way is to use switches. An-
other is to use groups (see section 4.3). Consider the following table:

c Do orthography change
begin > caseless

’\w ’ > dup set(qu) c Set switch (qu) to change
’\i ’ > dup set(qu) c kw to qu
’\p ’ > dup clear(qu) c Don’t change these fields.
’\d ’ > dup clear(qu) c Clear switch (qu) so
’\q ’ > dup clear(qu) c nothing happens to kw.
’\t ’ > dup clear(qu)

’kw’ > if(qu) ’qu’ c Change kw to qu for \w and \i
 else dup
 endif

What does this table say? First the line:

Consistent Changes User’s Guide 43

begin > caseless

tells the program to ignore case when it matches. For this table, it means that “kw” and
“Kw” will be changed with the same match. Unless it is told otherwise, the program will
always consider case when it matches. The lines:

’\w ’ > dup set(qu) c Set switch (qu) to change
’\i ’ > dup set(qu) c kw to qu

tell the program that whenever it sees a \w or a \i, it should duplicate what it has matched
(dup command) and that it should set switch (qu). The next lines:

’\p ’ > dup clear(qu) c Don’t change these fields.
’\d ’ > dup clear(qu) c Clear switch (qu) so
’\q ’ > dup clear(qu) c nothing happens to kw.
’\t ’ > dup clear(qu)

tell the program that whenever it sees any of the other markers, it should duplicate what it
has matched and clear switch (qu), so that switch (qu) will be inactive, in a sense. The
next two lines:

’kw’ > if(qu) ’qu’ c Change kw to qu for \w and \i
 else dup
 endif

contain the orthography change we want performed on the data in the \w and \i fields.
They say, whenever a “kw” is encountered anywhere in the data, check to see if switch
(qu) has been set. If it has, change it to “qu.” Otherwise, duplicate what was matched.
Note that this is identical in function to the following:

’kw’ > if(qu) ’qu’ c Change kw to qu for \w and \i
 endif
 ifn(qu) dup
 endif

The else command says look at the condition which preceded it. The endif command says
ignore what preceded, and look at what follows without prejudice.

So a switch in itself is something that can be used to allow the change table to affect data
or not affect data, depending on its condition.

4.5 Arithmetic Commands
There are five arithmetic commands:
– add(name)
– div(name)
– mod(name)
– mul(name)
– sub(name)

For each command, the syntax is the same:

44 Consistent Changes User’s Guide

add(name) ’number’

These commands are always used on the right side of the wedge. They all work with nu-
meric strings. A numeric string is a string that CC can convert to a value. Valid characters
in a numeric string are “0” through “9” . It is valid to precede a string of numeric charac-
ters with “ -” or “+” . CC will convert a numeric string to a numeric value. Such values
must be in the range of -1,999,999,999 to +1,999,999,999 (without the commas).

CC assumes that the specified storage area contains a valid numeric string and that the
string following the command is also a valid numeric string. CC will first convert both the
string in the specified storage area and the string following the command into numeric val-
ues. The operation (add, divide, etc.) is then performed using the two numeric values and
the result is stored as a numeric string in the specified storage area, replacing the store’s
original contents.

The cont(name) function can be used instead of a numeric string (for more information on
the cont(name) command, see section 3.4). The numeric string following the arithmetic
command can be any combination of literal strings and ASCII characters. In other words,
the expression ‘34’ is identical to the expression ‘3’ d52 (see Section 3.1 for an explana-
tion of using ASCII characters).

The numeric string following the command is terminated by the next command. In other
words, CC will regard everything following the command up until the next command as
part of the string to be operated upon. Note that nl is considered a character and will not
terminate an arithmetic command, nor will c, endfile, or ‘ ’ (null).

There are examples of these commands in section 3.4.

Consistent Changes User’s Guide 45

Chapter 5 Quick Reference

5.1 Error Messages
This section lists error messages that result from some problem in your table. It does not
list error message that may result from misspelling input file names or table names when
starting CC from the DOS prompt.

All error messages from the CC program are preceded by ?CC-E-, ?CC-F-, ?CC-W-, or
CC-Warning-. If an error is found in the table, the line containing the error may be dis-
played, with an arrow pointing at the place at which CC realized the error. Then the error
message will be given. Error messages will specify particular stores, groups, switches and
defines by numbers rather than names. You may have called a store junk, but any error as-
sociated with it will display a number instead. You can find out which store is referenced
by that number by running CC with the debug option.

Some errors can be caused by others. For example, an error in a group name will cause all
references to that group to also appear to the CC program to be errors.

If there are errors in your table, the following will be printed after the table has been proc-
essed:

There were errors in the change table.
Correct the errors and rerun.

The rest of this section is a list of the errors that CC generates:

Arithmetic: divide by zero in group name
The div(name) ‘number’ command has been used and the ‘numeric string’ has a value of
0. To resolve this error, you should change ‘number’ to be something other than zero.

Arithmetic: non-number in group name
One of the arithmetic commands (add(name) ‘number’, div(name) ‘number’, mod(name)
‘number’, mul(name) ‘number’, or sub(name) ‘number’) has been used and the contents
of the specified storage area does not have a number in it. To resolve this error, you
should be sure that the storage area contains only the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or
9, preceded by an optional - or + sign.

Arithmetic: number greater than 2,000,000,000 in group name
One of the arithmetic commands (add(name) ‘number’, div(name) ‘number’, mod(name)
‘number’, mul(name) ‘number’, or sub(name) ‘number’) has been used and either the con-
tents of the specified storage area or the ’numeric string’ is outside the range -
1,999,999,999 to + 1,999,999,999 (do not use commas).

Arithmetic: overflow in group name
One of the arithmetic commands (add(name) ‘number’, div(name) ‘number’, mod(name)
‘number’, mul(name) ‘number’, or sub(name) ‘number’) has been used and has resulted in
a number outside the range -1,999,999,999 to + 1,999,999,999 (do not use commas).

Backed too far storing
The number of back(v) commands given exceeded the number of characters in the current
storage area.

46 Consistent Changes User’s Guide

Backed up too far
More than 300 characters were backed using the back(v) command.

Bad number
The value v, which should be a number, is not a number or is missing altogether. Com-
mands which expect a numerical argument are back(v), fwd(v), and omit(v).

Begin command not first in table
A begin was found on the search side of an entry, but it was not the first entry in the table.

Binary command not in begin section
This error results from improper use of an incompletely implemented feature. This error
occurs when the binary command is used in your table other than in the begin section of
your table.

Caseless command not in begin section
This error occurs when the caseless command is used in your table other than in the begin
section of your table.

Decimal number too big, must be less than 256.
Since decimal numbers are used for the 256 ASCII codes, they should be within the range 0
to 255.

Defaulting to empty group x
This error occurs when there are no change entries! To resolve this error, add either a
change entry or an endfile section to your table.

Do nested deeper than 10
Nesting of defined sets of commands is allowed, that is, define(name) commands are al-
lowed to call other define(name) commands using a do(name), and those can call yet other
such commands. However, there is a limit how deep such nesting can go. That limit is 10.
Check that there is not a loop, or that a define command does not call itself. Both these er-
ror conditions are illustrated below:

Loop: define(1) ... do(2) ...
 define(2) ... do(3) ...
 define(3) ... do(1) ...

Calling Itself: define(1) ... do(1) ...

Do(name) used but never defined
This error results when a do(name) statement is encountered but there is no corresponding
define(name) statement in the table.

FATAL ERROR! excl command in group (name) removes all active groups
An excl(name) should only be used if you have previously made more than one group ac-
tive with multiple use(name) commands, and only then if you leave at least one group ac-
tive.

Font section of table is ignored in CC
You may get this error if you try to run a table that has no changes listed in it! More com-
monly, it is because the table you are trying to run contains a font(name) command, which
is not a valid CC command. Font(name) used to be a valid CC command, but is no longer.
The font(name) command needs to be removed before the table will run as expected.

Consistent Changes User’s Guide 47

Fwd too many
A maximum of 300 characters may be forwarded with the fwd(v) command, even if they
were only moved one character at a time.

Group (name) multiply defined
This error means that identical group(name) commands exist in your table in more than
one place. If you have several group(name) commands in your table, you must have a dif-
ferent number or name in place of name in each one.

Keep in mind that entries which appear before the first group(name) command are consid-
ered to form a default group(1). If a subsequent explicit group(1) appears in the table, CC

will abort with a “Group 1 multiply defined” message.

Group (name) excluded but not active
An excl(name) command was used to exclude a group that was not active. Excl(name) can
only be used on groups that have been activated with use(name) or incl(name).

Group command not in front of change
A group(name) command has been encountered, but the next line does not contain a
wedge. Comments may follow a group command, but check that they are preceded by
<ENTER> c <SPACE> or <SPACE> c <SPACE>.

Illegal command following arithmetic operator
A command that performs an arithmetic operation (such as add(name) ‘number’,
div(name) ‘number’, mod(name) ‘number’, mul(name) ‘number’, or sub(name) ‘number’)
has been used without the ‘number’.

Illegal command following comparison operator
A command that performs a comparison (such as ifeq(name) ‘string’, ifgt(name) ‘string’,
or ifneq(name) ‘string’) has been used without the ‘string’ .

Illegal number
An octal ASCII code was specified, but contains some character other than 0, 1, 2, 3, 4, 5,
6, or 7. In other words, some string of characters has been encountered which is not en-
closed in quotation marks that is neither a recognized command nor a valid octal ASCII

number.

Illegal parenthesis
A parenthesis was encountered where no parenthesis is legal. This could be an extra paren-
thesis —set(1)) or ifeq(1)(3)— or a parenthesis for a command which does not take an ar-
gument in parentheses. The following are commands which do not take an argument in
parentheses:

begin end nl
c endif ’’
caseless endfile read
dup endstore repeat
else next write --use wrstore(name)

Illegal use of command after >
The following commands cannot be used on the replacement side of an entry:

48 Consistent Changes User’s Guide

any(name) define(name) fol(name) group(name)
prec(name) wd(name)

Illegal use of command before >
Only the following commands are legal on the search side of an entry:

any(name) cont(name) endfile nl prec(name)
begin define(name) fol(name) ’’ wd(name)

The group(name) command must not be followed by a wedge on the same line.

Invalid decimal digit
A decimal ASCII code was specified, but contains some character other than 0, 1, 2, 3, 4, 5,
6, 7, 8, or 9. Decimal codes are specified by preceding them with the character d or D.

Invalid hexadecimal digit
A hexadecimal ASCII code was specified, but contains some character other than 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, or F. Hexadecimal codes are specified by preceding them
with the character x or X.

Invalid number for arithmetic
One of the arithmetic commands (add(name) ‘number’, div(name) ‘number’, mod(name)
‘number’, mul(name) ‘number’, or sub(name) ‘number’) has been used and the ‘numeric
string’ is not a number. To resolve this error, you should be sure that the ‘numeric string’
contains only the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9, preceded by an optional - or + sign.

Line too long, end cut off
A line in the table exceeded 125 characters.

Missing parenthesis
The opening parenthesis is missing from a command which expects an argument in paren-
theses (name).

More than 10 prec()s in succession
No more than 10 prec(name) commands can be used together.

No close parenthesis
Either the closing parenthesis is missing from a command which expects an argument in
parentheses or there is an invalid character in the argument.

No wedge on ‘begin’ line
There is a begin command that is not followed by a wedge on the same line.

No definition for do
A do(name) command has been used, but the corresponding define(name) command was
never made.

Number cannot be zero
Zero was used as the numerical argument of a command. Zero is not a legal value.

Number too big
A number given as the numerical argument for either a back(v), fwd(v), or omit(v) com-
mand exceeds 127. The maximum value allowed for v is 127. A maximum of 300 charac-

Consistent Changes User’s Guide 49

ters may be backed, forwarded, or omitted by using more than one command in a row.
(eg. back(120) back(30) causes 150 backs to occur.)

Number too big, must be less than 2,000,000,000
One of the arithmetic commands (add(name) ‘number’, div(name) ‘number’,
mod(name) ‘number’, mul(name) ‘number’, or sub(name) ‘number’) has been used and
either the contents of the specified storage area or the ‘numeric string’ is outside the
range -1,999,999,999 to +1,999,999,999 (do not use commas).

Number too large
An octal ASCII number exceeds 377 octal.

Omit too many
More than 300 omit characters were done in CC.

Storage overflow of store (n)
So many characters have been stored that the storage area is overflowing. When CC is run-
ning, there is room in memory for approximately 61,000 characters to be stored. This
room is shared between all the storage areas. It is also used by other things in your table.
This error occurs when storage is being done but there is no room for any more characters.

Store name used but never stored into
One of the following commands has been used on a storage area that has not first been
opened with a store(name) command:

ifeq(name) ifneq(name) outs(name)
ifgt(name) out(name) wrstore(name)

Switch name tested but never set or cleared
Either a if(name) or ifn(name) command has been used on a switch that has not first been
set with a set(name) command or cleared with a clear(name) command.

Table too large.
The total volume of the table exceeds the capacity of the program to store it. (This does
not include comments, which are discarded during the storage process.) The maximum
size table that CC can handle is a compiled 64K table. See section 3.5 for information on
compiling a table.

Too many changes.
No more than 2500 changes can be made in a CC table.

Too many defines
A table cannot have more than 127 different define(name) commands.

Too many groups
A table cannot have more than 127 different group(name) commands.

Too many stores
A table cannot have more than 127 different storage areas. These storage areas are created
with the store(name) and append(name) commands.

Too many switches
A table cannot have more than 127 different switches. These switches are created with the
set(name) and clear(name) commands.

50 Consistent Changes User’s Guide

Unmatched quote
A ’ or " has been found in a entry without a corresponding ’ or " before the end of the en-
try. If several quoted strings occur in the entry, any one of them may be missing the quota-
tion mark —the program will not notice that something is missing until the last quotation
mark is unpaired.

Unrecognized keyword
A string of characters has been encountered which is not enclosed in quotation marks but
which also is not a legal command or a legal ASCII octal number. Various control codes
will produce this message, since they are not considered legal characters. Only <TAB> and
<ENTER> are legal control codes in a table.

Commands which are valid only on one side of the wedge will cause this error if they are
used on the other side of the wedge.

Use of more than 25 groups
More than 25 groups cannot be in active use at once in CC. Although up to 127 groups
may exist in a table, only 25 may be made active using the use(name) and incl(name) com-
mands.

Use of nonexistent group
A use(name) command was specified in the table, but the corresponding group(name)
does not occur.

Use(name) encountered, but group never defined
A use(name), incl(name), or excl(name) command has specified a group that does not ex-
ist in the table.

WARNING
Error messages which begin with this word are bringing something to your attention of
which you might not be aware. CC will probably be able to use your table anyway. The
message following the WARNING can be looked up in this section.

Width must be right after wedge
The wid(name) command was used in a font entry, but is not immediately after the wedge.
Only spaces and tabs may precede the wid(name) command before the wedge. This mes-
sage only occurs when a /m command has been given to compile a table for Manuscripter.

Consistent Changes User’s Guide 51

5.2 Alphabetical Summary of Commands

add(name) ‘number’ add numeric string to area name
any(name) match any element of storage area name
append(name) store in area name, keep previous contents
back(v) put last v chars output back into input
begin beginning of table or nested block
c comment
caseless ignore case of first character of match
cont(name) match or compare contents of area name
clear(name) clear switch name
define(name) defines a set of commands called name
div(name) ‘number’ divide value in name by numeric string
do(name) execute set of commands called name
dup duplicate match string
else else
end end nested block
endfile match or output end of file char
endif end if (applies to all ifs)
endstore end storing
excl(name) exclude (make inactive) group name
fol(name) if following character is in area name
fwd(v) forward v characters (does not process)
group(name) specifies a group called name
if(name) if switch name is set
ifeq(name) ‘string’ if contents of area name equal string
ifgt(name) ‘string’ if contents of area name exceed string
ifn(name) if switch name is not set
ifneq(name) ‘string’ negative of ifeq(name) ‘string’
incl(name) include (activate) group name
incr(name) increment number in storage area name
mod(name) ‘number’ remainder when value in name is divided by numeric string
mul(name) ‘number’ multiply value in name by numeric string
next perform commands in next entry
nl match or output new line
‘ ’ null match; null replacement
omit(v) omit next v characters from input
out(name) output storage area name
outs(name) output area name (storing continues)
prec(name) if preceding character is in area name
read read input from keyboard
repeat repeat from preceding begin
set(name) set switch name
store(name) store in area name (discard previous contents)
sub(name) ‘number’ subtract numeric string from value in name
use(name) use group called name
wd(name) if chars before and after in area name
write ‘string’ output following string to screen
wrstore(name) output storage area name to screen
/b backup to previous question
/c compile table
/d debug trace
/m compile table for MS

52 Consistent Changes User’s Guide

/o new output file
/r return to beginning
/t change input media
/w wait for system

Consistent Changes User’s Guide 53

5.3 Commands by Logical groupings

Commands Using Switches:
clear(name) clear switch name
if(name) if switch name is set
ifn(name) if switch name is not set
set(name) set switch name

The following are similar to if(name) in function, but use store names, not switch
names:

ifeq(name) ‘string’ if contents of area name equal string
ifgt(name) ‘string’ if contents of area name exceed string
ifneq(name) ‘string’ negative of ifeq(name) ‘string’

Commands Using Store Numbers or Related to Storage Areas:
add(name) ‘number’ add numeric string to storage area name
any(name) match any element of storage area name
append(name) store in area name, keep previous contents
cont(name) match or compare contents of area name
div(name) ‘number’ divide storage area name by numeric string
endstore end storing
fol(name) if following character is in area name
ifeq(name) if contents of area name equal string
ifgt(name) if contents of area name exceed string
ifneq(name) negative of ifeq(name)
incr(name) increment number in storage area name
mod(name) ‘number’ remainder when value in name is divided by numeric string
mul(name) ‘number’ multiply value in area name by numeric string
out(name) output storage area name
outs(name) output area name (storing continues)
prec(name) if preceding character is in area name
store(name) store in area name (discard previous contents)
sub(name) ‘number’ subtract numeric string from storage area name
wd(name) if chars before and after in storage area name
wrstore(name) output storage area name to screen

Arithmetic Commands:
add(name) ‘number’ add numeric string to storage area name
div(name) ‘number’ divide storage area name by numeric string
incr(name) increment number in storage area name
mod(name) ‘number’ remainder when value in name is divided by numeric string
mul(name) ‘number’ multiply value in area name by numeric string
sub(name) ‘number’ subtract numeric string from storage area name

Ordinary Number Commands:
back(v) put last v chars output back into input
fwd(v) forward v characters (does not process)
omit(v) omit next v characters from input

54 Consistent Changes User’s Guide

Commands Using Group Numbers:
excl(name) exclude (make inactive) group name
group(name) specifies a group called name
incl(name) include (activate) group name
use(name) use group called name

Commands that can Cause a Loop:
back(v) if not outputting something different or using a different group
repeat if no way to stop repeating
‘ ’ (null match) if not used with fwd, omit, or use
endfile if matched and not output on right
define(name)/do(name) if 2 or more defined procedures call each other

Commands Using Defined Procedures:
define(name) defines a set of commands called name
do(name) execute set of commands called name
next do next set of replacement commands
caseless process data in “caseless mode”

Commands Involving the Screen or Keyboard:
read read input from keyboard
write ‘string’ output following string to screen
wrstore(name) output storage area name to screen

Nested Block Commands:
begin beginning of nested block
else else
end end of nested block
endif end of conditional set of commands
if(name) if switch name is set
ifeq(name) if contents of area name equal string
ifgt(name) if contents of area name exceed string
ifn(name) if switch name is not set
ifneq(name) negative of ifeq(name)
repeat repeat from previous begin

Commands which occur Only on the Search Side:
any(name) match any element of storage area name
fol(name) if following character is in area name
prec(name) if preceding character is in area name
wd(name) if chars before and after in area name
define(name) defines a set of commands

Commands which may occur on Either Side
(Note that the usage of these commands may be different
on opposite sides of the wedge):

begin beginning of table or nested block
cont(name) match or compare contents of area name
endfile match or output end of file char
nl match or output new line
‘ ’ null match; null replacement

Consistent Changes User’s Guide 55

5.4 ASCII Codes

ASCII Control Codes

Decimal Hexadecimal Octal Character Abbrev Meaning
--
 0 0 0 ^@ NUL null
 1 1 1 ^A SOH
 2 2 2 ^B STX
 3 3 3 ^C EXT exit
 4 4 4 ^D EOT end of tape
 5 5 5 ^E ENQ
 6 6 6 ^F ACK
 7 7 7 ^G BEL bell
 8 8 10 ^H BS back space
 9 9 11 ^I HT horizontal tab
 10 A 12 ^J LF line feed
 11 B 13 ^K VT vertical tab
 12 C 14 ^L FF form feed
 13 D 15 ^M CR carriage return
 14 E 16 ^N SO
 15 F 17 ^O SI
 16 10 20 ^P SLE
 17 11 21 ^Q DC1
 18 12 22 ^R DC2
 19 13 23 ^S DC3
 20 14 24 ^T DC4
 21 15 25 ^U NAK
 22 16 26 ^V SYN
 23 17 27 ^W ETB
 24 18 30 ^X CAN
 25 19 31 ^Y EM
 26 1A 32 ^Z EOF end of file
 27 1B 33 ^[ESC escape
 28 1C 34 ^\ FS
 29 1D 35 ^] GS
 30 1E 36 ^^ RS
 31 1F 37 ^ US

56 Consistent Changes User’s Guide

Other ASCII Codes

Decimal Hexadecimal Octal Character
--
 32 20 40 SPACE
 33 21 41 !
 34 22 42 "
 35 23 43 |
 36 24 44 $
 37 25 45 %
 38 26 46 &
 39 27 47 ’
 40 28 50 (
 41 29 51)
 42 2A 52 *
 43 2B 53 +
 44 2C 54 ,
 45 2D 55 -
 46 2E 56 .
 47 2F 57 /
 48 30 60 0
 49 31 61 1
 50 32 62 2
 51 33 63 3
 52 34 64 4
 53 35 65 5
 54 36 66 6
 55 37 67 7
 56 38 70 8
 57 39 71 9
 58 3A 72 :
 59 3B 73 ;
 60 3C 74 <
 61 3D 75 =
 62 3E 76 >
 63 3F 77 ?
 64 40 100 @
 65 41 101 A
 66 42 102 B
 67 43 103 C
 68 44 104 D
 69 45 105 E
 70 46 106 F
 71 47 107 G
 72 48 110 H
 73 49 111 I
 74 4A 112 J
 75 4B 113 K
 76 4C 114 L
 77 4D 115 M
 78 4E 116 N
 79 4F 117 O
 80 50 120 P

Consistent Changes User’s Guide 57

Other ASCII Codes (continued)

Decimal Hexadecimal Octal Character
--
 81 51 121 Q
 82 52 122 R
 83 53 123 S
 84 54 124 T
 85 55 125 U
 86 56 126 V
 87 57 127 W
 88 58 130 X
 89 59 131 Y
 90 5A 132 Z
 91 5B 133 [
 92 5C 134 \
 93 5D 135]
 94 5E 136 ^
 95 5F 137
 96 60 140 ‘
 97 61 141 a
 98 62 142 b
 99 63 143 c
 100 64 144 d
 101 65 145 e
 102 66 146 f
 103 67 147 g
 104 68 150 h
 105 69 151 i
 106 6A 152 j
 107 6B 153 k
 108 6C 154 l
 109 6D 155 m
 110 6E 156 n
 111 6F 157 o
 112 70 160 p
 113 71 161 q
 114 72 162 r
 115 73 163 s
 116 74 164 t
 117 75 165 u
 118 76 166 v
 119 77 167 w
 120 78 170 x
 121 79 171 y
 122 7A 172 z
 123 7B 173 {
 124 7C 174 ||
 125 7D 175 }
 126 7E 176 ~
 127 7F 177 DELETE

58 Consistent Changes User’s Guide

