
Consistent Changes
for Publishing

PAD-CCP

written by
Karelin Seitz

edited by
Kenneth Hubel

International Publishing Services
Summer Institute of Linguistics

7500 W. Camp Wisdom Rd.
Dallas, TX 75236

(972) 708-7440

FAX: (972) 708-7388

8/1/96

© 1992 Summer Institute of Linguistics
 Dallas, TX 75236

8/1/96

Table of Contents

Introduction . 1

Mod 1 Introduction to Consistent Changes 8

Mod 2 Basic CC Syntax . 12
search & replace character string comments
right wedge delimiters running CC

Mod 3 Setting the Stage Before You Begin 20
search order nl caseless
search pointer begin

Mod 4 Grouping Table Entries . 28
group incl excl
use

Mod 5 Using Storage Areas . 40
store any
endstore command line running of CC

Mod 6 Matches Conditioned by Environment 46
prec wd
fol display/debugging option

Mod 7 Getting it Out of Storage 54
out outs append

Mod 8 Moving Text On Through 60
dup endfile null
next omit

Mod 9 Going To And Fro . 66
fwd what can be searched for
back what can be sent to output

Mod 10 Introduction to Switches 74
switches if endif
set else visual alignment

Mod 11 More On Switches . 80
clear ??? search technique
ifn mark & rewind technique

Mod 12 ‘If’ Commands Using Stores 86
ifeq ifneq cont
set(dummy) ifgt incr

8/1/96

Mod 13 ‘If’ Commands—Advanced Techniques 96
begin more mark and rewind
end nesting ‘ifs’

Mod 14 ‘Doing’ Defined Routines and Repeating 102
define do repeat

Mod 15 Reading from the Keyboard and Writing to the Screen . . . 112
write read wrstore

Mod 16 Calculating with CC . 118
add mul mod
sub div

Table of Figures

Fig. 1. Input and Output Flow . 8

Fig. 2. Input and Output Flow Sample . 9

Fig. 3. WDLSTRIP.CCT Change Table . 29

Fig. 4. Sample Input and Output . 30

Fig. 5. Block Diagram . 31

Fig. 6. CAPCHK.CCT . 34

Fig. 6 CAPCHK.CCT continued . 35

Fig. 7. 7CHAR.CCT . 36

Fig. 7. 7CHAR.CCT continued . 37

Fig. 8. REFIND.CCT . 38

Fig. 9. EMCHEK.CCT . 45

Fig. 10. Verse Number Attributes for Ventura . 58

Fig. 11. FLAGEM.CCT . 82

Fig. 12. Mark and Rewind Technique . 83

Fig. 13. from VPNAM.CCT . 89

Fig. 14. LONGWD.CCT . 90

Fig. 15. from FIXEM.CCT . 90

Fig. 16. from CSTCHK.CCT . 91

Fig. 17. from WRDLST.CCT . 92

Fig. 18. from VPNAM.CCT group(3) . 99

Fig. 19. from VPNAM.CCT group(107) . 99

Fig. 20. from STDFIX.CCT group(10) . 100

Fig. 21. from EXTRAC.CCT . 103

Fig. 22. EXTRAC.CCT . 104

Fig. 22. EXTRAC.CCT continued . 105

Fig. 23. from WDLENG.CCT . 109

Fig. 24. from VPNAM.CCT . 110

8/1/96

Introduction

The Consistent Changes program (CC.EXE) is a powerful program
with many uses. This course is designed specifically for those appli-
cations involved in preparing a manuscript for publishing. All exam-
ples and exercises are taken from that context. Course coverage
includes all CC commands and many helpful techniques.

Constructing a CC table is very much like computer programming.
Therefore, those individuals with programming experience or apti-
tude will probably advance more quickly and perhaps further in their
understanding of CC than those without such background/aptitude.
However, this should not discourage anyone from this course!
There are several different levels on which one may work with CC.
Within the publishing context, much of the work with CC is in using
established CC tables which may require only minor job-specific
modification.

Each individual has his own strengths, weaknesses, and aptitudes. It
has often been found that those having the ‘programming’ aptitude
for CC lack some of the other aptitudes for camera-ready page pro-
duction—such as aptitudes for graphic layout or for repetitive work
requiring thoroughness and attention to detail. There is a need for a
mix of individuals with varying talents and aptitudes to be involved
in different capacities in the publishing process. But it is important
for all of them to have some level of understanding of Consistent
Changes.

This course is designed to allow each individual to work at that level
which is appropriate for him. The following course objectives are
stated in terms of three different levels of proficiency. Each student
should set his expectations according to his background, aptitudes,
and the requirements of his specific assignment.

Introduction Page 1

8/1/96

Course Objectives

Proficiency Level 1 (On the job, the individual will need direct supervi-
sion by someone with in depth understanding of CC and the publish-
ing process.)

General: The student will be able to modify an existing CC table at
well-defined designated points and run CC using the modified table.

Specific: The student will be able to activate designated options in
the VPNAM.CCT change table and run CC using this modified table.

Proficiency Level 2 (On the job, the individual will be able to work semi-
independently with occasional assistance from someone with in
depth CC knowledge.)

General: The student will be able to trace the logic flow through
limited sections of an existing complex table, will be able to make
simple to moderate modifications in an existing complex table, will
be able to write simple to moderately complex tables, and will be
able to run CC from prompts or command line.

Specific: The student will be able to make appropriate job-specific
modifications to VPNAM.CCT and FLAGEM.CCT, write increasingly
complex (simple to moderate) job-specific tables, and run CC from a
command line entry.

Proficiency Level 3 (On the job, the individual will be able to work inde-
pendently, handling any level of complexity.)

General: The student will be able to understand and extensively
modify existing complex tables, will be able to write and debug in-
creasingly complex tables, and will be able to run CC using any of
the operation options.

Specific: The student will be able to appropriately modify
FLAGEM.CCT or FIXEM.CCT and write and debug a table of equal
complexity.

Page 2 International Publishing Services PAD-CCP

8/1/96

Course Exercises

The exercises at the end of each module in this course can be di-
vided into three categories that relate to the proficiency levels out-
lined in the Course Objectives. A student’s ability to successfully
complete the exercises within each group can give him a general
idea of his degree of understanding of the Consistent Changes
program.

The exercises in the first category involve basic concepts of CC that
most students will be able to grasp, even with little programming or
computer aptitude. Successful completion of these exercises would
be preliminary to attaining Proficiency Level 1:

Module Exercise Module Exercise Module Exercise
 3 1 9 2 14 1
 4 1 9 3 14 2

The exercises in the next category involve simple modifications of
existing change tables and the creation of single entry tables. Suc-
cessful completion of these exercises would indicate the attainment
of Proficiency Level 1 of the Course Objectives:

Module Exercise Module Exercise Module Exercise
 2 1 5 2 10 2
 2 2 5 3 11 1
 3 2 6 1 12 1
 3 3 6 2 12 2
 4 2 7 1 15 2
 5 1 8 3 15 3

The exercises in the last category involve more complex modifica-
tions of existing change tables and the creation of tables that require
greater logical skills. Successful completion of these exercises
would indicate the attainment of Proficiency Level 2 of the Course
Objectives:

Module Exercise Module Exercise Module Exercise
 4 3 8 2 13 1
 7 2 9 1 13 2
 8 1 10 1 15 1

If a student finds that he is able to successfully complete all
exercises in the course with little or no consultation and without feel-
ing overwhelmed, then he is well on his way to attaining Proficiency
Level 3 of the Course Objectives.

Page 3

8/1/96

Orientation for TUTORED Self-Paced Use of Course

This course is to be used in a learning environment with an accessi-
ble tutor/trainer! It has not been designed for solo use. It is for self-
paced learning, but not self-taught learning.

Required materials include this syllabus, the Consistent Changes
User’s Guide, Consistent Changes software (CC.EXE version 7.4),
and the student disk for this course.

It is recommended that the student work through each module—com-
pleting all activities, questions, reading and exercises, ensuring that
the module objectives have been met, and reviewing work with the
tutor—before moving on to the next module. Modules build on each
other. Once material has been covered, it is assumed that the infor-
mation is understood, and it will be used in later modules without
further explanation.

People learn in different ways. Some need to read the material first
or see it illustrated. Some need to interact with others, discussing the
information, or hearing it presented. Others prefer ‘hands on’ experi-
mentation. The course is designed to accommodate all learning
styles. If you know how you learn best, emphasize that approach,
but do not ignore the other avenues for learning. There are unique ad-
vantages within each.

Page 4 International Publishing Services PAD-CCP

8/1/96

Orientation for Classroom Use of Course

This course is also well suited to a classroom environment of 4-10
students, with the trainer giving comprehensive instruction to the stu-
dents before they work out the exercise problems.

The tentative classroom schedule is:

 Week 1 Week 2

 Monday Mod 1, 2, 3 Monday Mod 10, 11
 Tuesday Mod 4, 5 Tuesday Mod 12, 13
 Wednesday Mod 6, 7 Wednesday Mod 14, 15
 Thursday Mod 8, 9 Thursday Review, Mod 16
 Friday Review Friday Review, Finish up

To best utilize classroom instruction, it is recommended that the stu-
dent preview the modules that will be taught prior to coming to
class; an understanding of the modules is not necessary at this time.
During the morning classroom session the student will receive com-
prehensive instruction covering those modules. In the afternoon the
student should review all material covered in class, then work out
the assigned exercises to gain a further understanding of the con-
cepts taught.

The following chart summarizes when the sections of each module
should be covered:

 students trainer students

 preview covers review and

 before in detail do exercises

 class during class after class

Commands/Topics Covered X

Objectives X

Instruction X X X

Vocabulary and Concepts X X X

Practice Activities and Questions X X

Reading Assignment X

Exercises X

Page 5

8/1/96

Typographic Conventions Used in This Syllabus

The typographic conventions used in this syllabus will hopefully be-
come self-evident while you read the text. A summary of the pri-
mary conventions used are as follows:

SMALL.CAP Names of files, most of which are located on the
student disk

Typewriter CC commands and keyboarded computer input

<ENTER> Name of key pressed in a single keystroke

<CTRL/C> Names of keys pressed concurrently—much in the
same way as producing upper case (shifted) letters

text words Words defined in Vocabulary sections

data stream CC text data stream showing output text, search
pointer, and input text

16 endstore Page number and paragraph name to be read in
the CC User’s Guide (used in reading assignments)

italic Emphasized text

Note that the typographic conventions used in the CC User’s Guide
are slightly different from those shown here for this syllabus. Con-
sult the table in the User’s Guide for the typographic conventions
used there.

Page 6 International Publishing Services PAD-CCP

8/1/96

Distribution of Course Materials

This course syllabus and associated student disk is used in the Con-
sistent Changes for Publishing course taught by International Pub-
lishing Services (IPub) at the International Linguistics Center in
Dallas.

The course materials (syllabus and disk) are available at any time
from IPub as a self-paced course with tutor assistance. Additionally,
the materials may be purchased from IPub for $25.00 plus postage.

Permission is granted to copy the materials as long as the syllabus
and disk files are not altered. Any corrections or suggested changes
should be submitted to IPub–User Support, ATTN: PAD-CCP, at the
address below.

For those using the materials outside of IPub, a registration fee per
student ($10 for SIL member or employee, $20 for non-SIL) will enti-
tle the student to receive a critique of their exercises, and, if satisfac-
torily completed, IPub Course Completion certificate.

To register for a classroom or self-paced course at IPub, or to pur-
chase the syllabus and disk, or for further information contact:

User Support
International Publishing Services
7500 W. Camp Wisdom Rd.
Dallas, TX 75236 USA

phone: (972) 708-7364
fax: (972) 708-7388

Page 7

8/1/96

Mod 1 Introduction to Consistent Changes

OBJECTIVES

At the end of this module, the student (from memory) will be able to:

• draw a block diagram of CC showing inputs and output,
• name at least three ways CC is used in preparing a manuscript for

publishing.

INSTRUCTION

1. What is Consistent Changes?
Consistent Changes (CC) is a computer program written by JAARS. It
will apply a set of specified changes to one or more text files in a
consistent manner. In its simplest form it functions like the search
and replace feature of a word processor. However, CC can also be
used to count specific items, insert or delete items, extract or reorder
items, and report on conditions found. It can also do these things in a
context sensitive way.

2. How does Consistent Changes work?
CC must have two inputs: the file to be changed and a file describing
the changes to be made. CC produces one output file. Neither of the
input files are changed by running CC. (See Fig. 1)

The file describing the changes to be made is called a change table.
The file name for the change table is usually given the extension
.CCT to designate it as a CC change table. The change table must be
created before running CC. Any word processor or text editor that
can create an ASCII file may be used.

Consistent

Changes

Program

Input

Text

File

Change

Table

Output

Text

File

Fig. 1. Input and Output Flow

Page 8 International Publishing Services PAD-CCP

8/1/96

The basic process flow of CC is summarized in Figure 2. The change
table and the input file are read and compared. When input text
matches an entry in the table, the corresponding change is made in
the output; any input text that is not matched in the change table is
passed on to the output unchanged.

As with all computer programs, specific commands and correct
syntax are required to describe the changes that are to be made so
that the CC program will be able to correctly perform them. This
course will teach you how to properly describe changes in the
change table to produce the desired changes in the text file.

3. How is Consistent Changes used in preparing manuscripts for publishing?
CC is one of the most powerful and versatile tools we have for identi-
fying, verifying, and correcting generic codes, punctuation, ortho-
graphic representations, spelling and other aspects of the manuscript
contents and structure.

Some of the specific uses include:
– error flagging
– counting words, elements, etc.
– correcting spelling, Standard Format Markers (SFMs), etc.
– cleaning up unnecessary spaces, markers, etc.
– reordering text elements
– extracting specific text elements for review or separate processing
– stripping unneeded text elements
– exchanging SFMs for format commands used by the formatting

program
– inserting text attributes
– exchanging digraphs for a single substitute character or ASCII code
– marking valid potential hyphenation points in the text

Consistent

Changes

Program

\id MAT
\B Gospel of Matthew
\c 1
\s This is the story of ...
\p
\v 1 ...

\B to \mt

\id MAT
\mt Gospel of Matthew
\c 1
\s This is the story of ..
\p
\v 1 ...

Input File Output File

Change Table

Fig. 2. Input and Output Flow Sample

Mod 1 Introduction to Consistent Changes Page 9

8/1/96

VOCABULARY and CONCEPTS

ASCII file—a text file that contains only standard ASCII codes, with
no formatting or control codes (e.g., output from JAARS ED pro-
gram, or MS-Word when file is saved unformatted.)

change table—in Consistent Changes, the table specifies what is to
be searched for in the text; under what conditions it will be con-
sidered a match; and what action to take when a match occurs.

consistent change—the same change is applied in the same way
each time the same specified circumstance is encountered.

context sensitive—both the ‘search’ and the ‘replace’ (or action to
be taken), can be restricted or changed by the surrounding text or
conditions encountered.

digraphs—two or more successive characters used to represent a
special character or accented character.

search and replace—there are two components: the ‘search’ compo-
nent and the ‘replace’ component. The text is searched for the
‘search’ component. When it is found, it is replaced with the ‘re-
place’ component.

syntax—the way in which commands or instructions are spelled or
structured according to the specific program’s requirements.

QUESTIONS

1. The search and replace feature on a word processor can do every-
thing that Consistent Changes can do.

 T F

2. The input file will be altered according to the changes specified by
the change table when CC is run.

 T F

3. Name three ways that CC is used in preparing manuscripts for publi-
cation.

Page 10 International Publishing Services PAD-CCP

8/1/96

READING ASSIGNMENT

CC User’s Guide: 5 Creating a Change Table

(Interpret this to mean: Read the section entitled “Creating a Change Table”

found on page 5 of the CC User’s Guide at the back of this syllabus.)

Mod 1 Introduction to Consistent Changes Page 11

8/1/96

Mod 2 Basic CC Syntax

COMMANDS/TOPICS COVERED

search & replace character string comments
right wedge delimiters running CC

OBJECTIVES

At the end of this module the student (using notes, syllabus, and/or CC

User’s Guide) will be able to:

• create and/or modify a change table file to make simple orthographic
or Standard Format Markers (SFM) changes.

• document the table internally with comments
• run CC from the DOS prompt

INSTRUCTION

1. Search and Replace Arguments— An entry in a change table consists
of two basic parts: an item to search for, and an action to take when
the item searched for is found. These parts are known as the search
argument and the replacement argument, respectively. They are writ-
ten in the change table with a right wedge between them as follows:

 "search argument" > "replacement argument"

A space or tab must precede and follow the wedge. The search argu-
ment and wedge must fit on one line; but the replacement argument
may be multiple lines.

One thing that can be searched for is a character string. It must be en-
closed in delimiters to indicate to CC that this is data rather than an
instruction. In CC, either the apostrophe or inch mark (’ or " , but not
the grave accent) may be used as a delimiter, and the beginning and
ending delimiters must match. Strings containing both ’ and ” must
be represented in pieces (though together they are still considered a
single character string):

’The man said, "I ’ "don’t " ’remember."’

A character string can also be used as a replacement argument. A
simple entry in a change table would be:

 "character string 1" > "character string 2"

This would search for “character string 1” in the input file and,

Page 12 International Publishing Services PAD-CCP

8/1/96

when found, would replace that string in the output file with
“character string 2” .

NOTE: Some text processors such as XyWrite require pressing
<ENTER> at the ends of every line of the change table to ensure that
they terminate with a CR/LF (carriage return and line feed). Do not
assume that the editor’s “auto-wrap” feature automatically adds the
CR/LF simply because it looks right on the computer screen. (The
JAARS ED program does auto-wrap properly.) Change tables keyed
using MS-Word must be saved in “ text only” mode with line breaks.
All lines in a change table must contain 125 characters or less from
the beginning of the line to its corresponding CR/LF. Longer lines
will be truncated, resulting in potential errors.

2. Commands— A command is a word that has special meaning to the
CC program. Commands function as instructions to the CC program.
All commands must appear in lower case letters. Some commands
require a parenthesized argument.

Commands are never enclosed in delimiters. If delimiters are used,
CC will treat the commands as character strings. Commands are al-
ways surrounded by space (i.e., a space, a carriage return, or a tab).
(Note: if a command requires a parenthesized argument, the space
must occur after the parenthesized argument, not after the command
itself.)

3. Comments— Comments can be inserted into the change table to ex-
plain what an entry is doing or why it is being done, as well as what
the purpose of the table is, who wrote it, when, etc. Comments are
an extremely important part of any change table that is more than a
few lines long or will be used more than once.

A change table frequently becomes a standard tool requiring only mi-
nor modification for each use. Comments are necessary for even ex-
perienced CC users to understand and modify change tables.

A comment consists of the letter c surrounded on both sides by
space (i.e., a space, a carriage return, or a tab), with the text follow-
ing it on the same line. The c may be at the beginning of a line mak-
ing the whole line a comment, or to the right of an entry making the
rest of the line a comment. The letter c may be either lower or up-
per case. (This is the only command that may appear upper case.)

The following example includes various comments:

Mod 2 Basic CC Syntax Page 13

8/1/96

c
c c
c This table makes simple SFM corrections. c
c c
c c

"\B" > "\mt" c change \B to \mt

c other SFMs to be changed may be added below.

4. Running CC from the DOS prompt— After you have created a change
table file, it is very simple to run the CC program. The program will
ask you for the information it needs. To run CC from the DOS

prompt, enter:

CC <ENTER>

Note: CC.EXE must be in a directory that DOS knows to search.
Ordinarily, this means it will be in a directory which is listed in the
PATH* command in the AUTOEXEC.BAT* file on your computer.
When you run CC, your default directory* should be the directory
your change table (and/or input) is in.

After entering CC, assuming DOS was able to find the program, it
will respond with the program version and date, and then will ask:

Changes file?

Respond with the name of your change table file.

Changes file? mytable.cct <ENTER>

If no extension is entered for the file name, CC will first look for a
file by that name without an extension, but if none is found, it will
append .CCT to the file name. Remember to add the path name if the
change table is not in the default directory.

CC will then ask:

Output file?

Note that the output file prompt precedes the input file prompt!
Respond with the file name you want given to the output file to be
created.

Page 14 International Publishing Services PAD-CCP

8/1/96

* If these terms are not familiar to you, consult your DOS manual.

Output file? myoutput.txt <ENTER>

If a file by that name already exists, the program will notify you
with:

 (filename) already exists, Replace it? [No]

The No in brackets is the default answer if you just press <ENTER>.
No or <ENTER> will result in Output file? being asked again.

If the file does not already exist or if you answer the message
"(filename) already exists. Replace it? [No]" with Y (for
yes), the program will immediately create a file with zero content by
that name. For this reason you must never name the output file the
same as the input. The input file will be zeroed out and you will
have lost it!

After the output file name is established, the program will ask:

Input file?

Respond with the name of your input file including the path if it is
not in the default directory.

Input file? c:\mydir\myinput.txt <ENTER>

When the end of the input file is encountered, the program will ask:

Next input file (<RETURN> if no more)?

This allows you to continue processing additional files and the out-
put to be combined into one output file. Pressing <ENTER> signifies
that there are no more files to be processed, and the program will
finish up.

VOCABULARY and CONCEPTS

character string—one or more characters representing literal text
rather than a command or ASCII code. A string may be used on
the search or replacement side and must be enclosed in single or
double quote delimiters.

command—a word having specific meaning to the CC program. It is
typed in lower case letters and not enclosed in delimiters.

delimiters—a character used at the beginning and end of an item to
indicate the item’s boundaries. In CC, ’ or " can be used as a

Mod 2 Basic CC Syntax Page 15

8/1/96

delimiter, but the beginning and ending delimiter for an item
must be the same. Examples: ’search’ and "search"

LIST —LIST.COM is a shareware utility that will display a file on the
screen. It is for browsing only as it does not have editing capabil-
ity. It has been included on the student disk for use in this course.

right wedge—the character also known as a closing angle bracket.
This character signifies the end of a search argument.

c AFRIORTH.CCT: group 10 orthographic changes for Africa.

group(10) c ORTHOGRAPHY TABLE

c PUNCTUATION

 ’((’ > ’[’ c square open bracket
 ’))’ > ’]’ c square close bracket
 ’*fn*’ > ’<P10MJ230>n<P255DJ0>’ c ftnote mrkr in text
 ’--’ > ’<197>’ c EM dash
 ’=’ > ’<->’ c dup discretionary hyphen
 ’<<’ > ’<169>’ c English open double quote,
 ’>>’ > ’<170>’ c English closing double quote
c ’<<’ > ’<214>’ c French open dbl quote (alter CST)
c ’>>’ > ’<215>’ c French closing dbl quote (alter CST)
 ’<’ > "‘" c English open single quote
 ’>’ > "’" c English closing single quote
c ’>’ > "‘" c French closing sgl quote (alter CST)
c ’<’ > "’" c French open sgl quote (alter CST)

c DIACRITICS
 "’a" > ’<141>’ c acute lc a
 "’e" > ’<142>’ c acute lc e
 "’i" > ’<143>’ c acute lc i
 "’o" > ’<144>’ c acute lc o
 "’u" > ’<145>’ c acute lc u
c "’/e" > ’<146>’ c acute lc epsilon
c "’/o" > ’<147>’ c acute lc au
c "’/u" > ’<148>’ c acute lc barred u MUST ADD TO CST
 "’A" > ’<149>’ c ACUTE UC A
 "’E" > ’<150>’ c ACUTE UC E
 "’I" > ’<151>’ c ACUTE UC I
 "’O" > ’<152>’ c ACUTE UC O
 "’U" > ’<153>’ c ACUTE UC U
c "’/E" > ’<154>’ c ACUTE UC EPSILON
c "’/O" > ’<155>’ c ACUTE UC AU
c "’/U" > ’<156>’ c ACUTE UC BARRED U MUST ADD TO CST

Page 16 International Publishing Services PAD-CCP

8/1/96

PRACTICE ACTIVITIES and QUESTIONS

1. The change table (AFRIORTH.CCT) on the preceding page is used
for African languages to change digraphs and multi-stroke repre-
sentations of characters into single characters or ASCII codes.

Things to notice in this change table:
– the use of apostrophe and inch marks as delimiters
– the alignment of the entry components to aid readability
– the use of space or tabs separating the entry components
– the use of comments:
 a. at the beginning of the table to state its name and

 purpose

 b. centered on lines to form headings (e.g., c DIACRITICS)

 c. following an entry to identify the resulting character

 d. at the beginning of a line, preceding an entry, to make

 that entry inoperative but still available for future use

2. In the AFRIORTH.CCT example preceding, draw a circle around
the actual characters that will be searched for. (Do not include
delimiters.)

3. Using AFRIORTH.CCT, what will the following sentence be
changed to in the output file?

\v 1 Net’a mat’a ap’i oko ut’o i gamena nene,

’Omas’imini agepag’u gakot’o mina v’emo

nene hanuva minake, mino-loko iteko minam’o.

__

__

__

4. Write out the entry, with a descriptive comment, that you would
add to AFRIORTH.CCT to change the two-character sequence "e

to a lower case ‘e’ with dieresis, or ‘ë’, represented by the se-
quence <158>.

__

Mod 2 Basic CC Syntax Page 17

8/1/96

5. Write a change table (complete with comments) that will make
the following Standard Format Marker (SFM) changes:

 change \b to \mt __

 change \sh to \s___

 change \x to \r ___

 change \pp to \p __

6. Locate the CC.EXE program on your hard disk. At the DOS

prompt, type: disk cc.exe <ENTER> , or use some other utility.
What is the complete path name where it is located?

7. LIST autoexec.bat . Is the path for CC listed in the PATH com-
mand in AUTOEXEC.BAT?

 Yes No

8. Insert your student disk in drive A: and make that drive the de-
fault drive by typing the command A: at the DOS prompt. Create
a new subdirectory on your disk: md \output . Run CC using
AFRIORTH.CCT as the change table and AFMT.SFM as input. These
are on your student disk. Name the output file AFMT.OUT and
cause CC to create it in the new “output” directory on your stu-
dent disk.

READING ASSIGNMENT

CC User’s Guide: 5-7 Using a Change Table, 8 Form of Changes,

13 comment

EXERCISES

1. With the A: drive as your default drive, make a subdirectory on
your student disk with your own name: md (name) . Now copy
and rename AFRIORTH.CCT from the root of your student disk to
MYAFRIOR.CCT in your directory on the disk by typing:
 copy \afriorth.cct \(name)\myafrior.cct .
Using your copy of MYAFRIOR.CCT, do the following things:

a. after the first comment line add a comment line stating:

Modified for PAD-CCP Mod 2 by (your name) — (date)

b. uncomment search entry ’/d’ (the hooked d) and change the

replacement to ’#’ ;

c. add an entry to change the sequence space-hyphen-space to

<196> , including a comment labeling this an en-dash;

Page 18 International Publishing Services PAD-CCP

8/1/96

d. list afmt.sfm and note the changes that will be made;

e. run CC using your modified table and input file AFMT.SFM;

f. list your output file and check for changes—especially the

’#’ and <196> ;

g. print your output, write your name on it, and hand it to your

trainer.

2. Write a change table (first on paper and then key it into the com-
puter) containing the following:
a. comment lines identifying name of table, purpose of table,

date written, and author;

b. documented entries for the following changes:

\mt to @main title = (tag for main title)

\s to @sect hd = (tag for section head)

\c to @chpt = (tag for chapter num)

\p to @par = (tag for paragraph)

(for this exercise, do not include spaces after the SFMs in the

search strings, or after the ‘=’ in the replacements.)

c. run CC using AFMT.SFM as input;

d. look at the input and output files to check changes;

e. print your change table, write your name on it, and give it to

your trainer.

Mod 2 Basic CC Syntax Page 19

8/1/96

Mod 3 Setting the Stage Before You Begin

COMMANDS/TOPICS COVERED

search order nl caseless
search pointer begin

OBJECTIVES

At the end of this module, the student will be able to:

• demonstrate an understanding of the sorted order of entries by identi-
fying correct output when given input and table entries;

• describe to the trainer the basic operation of the search pointer.
• write a table entry correctly using begin and caseless ;
• demonstrate an understanding of caseless by correctly filling in the

output that will result from given input and table entries.

INSTRUCTION

1. Input files, output files, and data buffers— As has already been men-
tioned, input files which are read into the CC program are not
changed. An input file will remain intact, untouched, by the CC pro-
gram when the program is done. The end product of the program
will be a newly created output file, the contents of which are gener-
ated according to the instructions in the change table.

CC accomplishes this by reading the input file and making an identi-
cal copy of its contents in a data buffer within the computer mem-
ory. A data buffer is simply a place designated in computer memory
for retaining data, in this case, the characters read from the input file,
while a program is running.

All changes that are done to the input text will actually be taking
place in this buffer. When all the changes are done, then the contents
of this data buffer are copied to an output file on the computer disk
for permanent storage. In this course, when we speak of input text or
output text, we will usually be referring to the characters within the
data buffer.

2. Search order and search pointer— While constructing a change table
that will yield desired results, it is helpful to understand the order in
which table entries are searched and how Consistent Changes makes
use of a search pointer in the data stream. First, you should know
that CC doesn’t search the input text for the search arguments in the
order that they are entered into the table. CC sorts them by length

Page 20 International Publishing Services PAD-CCP

8/1/96

with the longest search entry first:

EXAMPLE

Table entries: Search order:
"t" > "x" "these" > "those"
"the" > "a" "the" > "a"
"these" > "those" "t" > "x"

Using the above table entries with the following input text:

these are times that try the student

you will obtain the following output text:

those are ximes xhax xry a sxudenx

and not this text, which would result from not sorting the entries:

xhese are ximes xhax xry xhe sxudenx

Now let’s look in greater detail at how this search is made in the in-
put text, or more specifically, in the data buffer or data stream. CC

uses a pointer to track its forward progress through the input text.
You might call it a search pointer.

The search pointer tracks the current place in the data stream where
all matches and changes take place. Unless otherwise instructed by
various CC commands or unless a match occurs, the search pointer
moves through the data buffer one character at a time.

The search pointer divides the input text from the output text in the
data buffer. All characters to the right of the pointer are input text
characters, originally copied from the input text file. They have not
yet been compared to the search entries of the change table. All
characters to the left of the search pointer are output text characters,
already processed by the change table, and ultimately to be copied to
the output text file at the completion of the program.

When the CC program begins, the search pointer will be pointing in
front of the first character of the input text. The program will be
ready to compare the data found to the right of the pointer with each
search argument, starting with the longest search entry first, looking
for identical matches. Using the above table entries and input text as
an example, the following shows the initial data and pointer location:

Mod 3 Setting the Stage Before You Begin Page 21

8/1/96

 these are the times...

 search pointer

The input text is compared to the longest table entry "these" . This
entry exactly matches the first five characters of the data stream and
is considered a match. When a match occurs, the entire matched
string is removed from the input text:

 are the times...

 search pointer

then the replacement string "those" is placed in the output, that is,
on the left side of the search pointer, becoming:

 those are the times...

 search pointer

In this course we will signify the output characters in the data stream
by an underline.

With the search pointer in its new position, the characters in the data
stream beginning with " aare..." (remember that each space is a
character too!) is once again compared to the sorted list of entries. It
is compared with the longest entry "these" first, but it does not
match. The next longest entry "the" does not match, and neither
does the final entry "t" .

When the characters following the search pointer will not match any
search entry, we say “ there is no match,” and the data stream is han-
dled in a special way. At a “no match” the data stream is treated as
though exactly one character is matched and an identical character is
placed in the output. In our example, a space is removed from the in-
put and a space is placed in the output:

 those are the times...

 search pointer

And as the search continues the computer will:

– compare the data stream (beginning at the search pointer) with the
search entries, longest to shortest;

– remove the matched characters from the input;

Page 22 International Publishing Services PAD-CCP

8/1/96

– place the replacement string in the output (left of the pointer);

– when there is no match, remove one character from the input and
place it in the output.

Notice that the search pointer does not point to characters but
between characters, and that text may be added to or deleted from
the data stream only at the position of the search pointer.

3. nl (new line)— When searching for a phrase, it is important to re-
member all the forms it might take. Let’s consider phrases that
might have line breaks in the middle. In ASCII files, each line ends
in a hard return. Therefore,

EXAMPLE

"The Gospel According to St. John" > "replacement"

would match the input text:

The Gospel According to St. John

but would not match the input text:

 The Gospel
According to
 St. John

with a return at the end of each line.

To match on this input text, we must search for a return or new line
in those specific locations using the command nl . The following
search would match the above input text:

EXAMPLE

"The Gospel" nl "According to" nl "St. John" >
"replacement"

The command nl can also be used to force a new line in the output
by using it in the replacement argument.

EXAMPLE

"The Gospel" nl "According to" nl "St. John" >
"The Gospel According to"
nl "St. John"

4. begin — If there are certain actions you want the Consistent
Changes program to do before any of the input file is read, this can

Mod 3 Setting the Stage Before You Begin Page 23

8/1/96

be indicated by the begin command. When used, it must be used by
itself as the search argument in the first entry in the table.

begin > replacement argument

It will only be executed once. (It may be preceded by comments, but
it must be the first executable entry in the table.)

5. caseless — This command is used only on the replacement side of
a begin statement. It enables a single search string to match a string
in the data stream whose initial character might be either an upper or
lower case letter. However, caseless works in a unique way—so
don’t jump to conclusions! Here are some things you need to know
about caseless :

a. In caseless mode, CC checks the case of the first (and only first)
character of the input text (i.e., the single character immediately
to the right of the search pointer). If it is an upper case letter, it is
changed to lower case before the input text is compared to the
search entries of the change table. Lower case and non-alphabetic
characters remain the same.

The second, third, etc., characters of the input string are not
altered. If the second character is upper case, it remains upper
case.

Since the first character of the input text will always be looked at
in its lower case form when using a caseless table, the first char-
acter of each search entry (if alphabetic) must likewise begin with
a lower case letter to be matched. Search entries beginning with
upper case letters will never be matched.

b. If the first character of the input was originally upper case and
changed to lower case before matching, then the first character of
the replacement string that is to be sent to the output will be
changed to upper case. If the first character of the output is non-
alphabetic or already upper case, it will be output as is.

EXAMPLE

Table entries:
begin > caseless c line 1
"The" > " One" c line 2
"the" > "a" c line 3
"few" > " Some" c line 4
"(one" > "(this" c line 5
"HIS" > "YOUR" c line 6

Page 24 International Publishing Services PAD-CCP

8/1/96

When This
this is is the
found in resulting
Input: Output: Comments:

The A matches at line 3 (NOT 2!)
the a matches at line 3
Few Some matches at line 4
few Some matches at line 4 (notice " S")
(One (One will NOT match at line 5!
HIS HIS will NOT match at line 6!

c. Even when a search or replacement string is broken in parts (e.g.
"the Gospel" nl "According to" nl "St. John"), only the
first character of the entire string is affected by the caseless

command.

d. A change table will not function partly in regular mode and partly
in caseless mode. It is either all caseless or none. In other
words, you cannot put caseless in a replacement other than the
initial begin statement in order to suddenly change searching
modes.

VOCABULARY and CONCEPTS

hard return —the equivalent of pressing the <ENTER> or <RETURN>

key.

pointer—a “place keeper” in the data stream. Don’t be concerned
with how the place is kept, but rather the concept of using a
pointer.

PRACTICE ACTIVITIES and QUESTIONS

1. You won’t be familiar with most of the commands, but LIST the
following change tables (found on your student disk) and notice
the ways in which begin , caseless , and nl are used.
a. 7CHAR.CCT—Notice begin > caseless is the first execut-

able line of the table. Search for nl . See how it is used on the

replacement side two times in group(1) and on the search

side in group(4) .

b. RESPEL.CCT—Notice that caseless is not the first replace-

ment action for begin , but it is one of the replacement actions.

Notice the use of nl on the search and the replacement sides

in group(1) and group(10) .

Mod 3 Setting the Stage Before You Begin Page 25

8/1/96

READING ASSIGNMENT

CC User’s Guide: 9-10 Order of Changes, 12 begin, 13 caseless, 21 nl

EXERCISES

1. On a blank sheet of paper, write the table entry that is needed to
allow search entries and input text characters to match whether
the first character of the input is capitalized or not. Save this
paper for Exercise 2 and 3 below.

2. Carefully study the following table entries. For each entry, write
down (on the paper from Exercise 1) all input text strings (if any)
that can match the search string, and the corresponding output
string that will result from each input string.

Table Entries

begin > caseless
’whosoever’ > ’whoever’ c entry A
’verily’ > ’truly’ c entry B
’LORD’ > ’God’ c entry C
’christ’ > ’Jesus’ c entry D
’\sH ’ > ’\s ’ c entry E
’gOSPEL’ > ’good news’ c entry F

 Table All input strings (if any) that Resulting output string when

 entry will match the search entry input string at left is matched

A. whosoever whoever

 Whosoever Whoever

B.

C.

D.

E.

F.

Page 26 International Publishing Services PAD-CCP

8/1/96

3. Given the following change table and line of input, write out the
expected output on the same sheet of paper used in Exercise 1
and 2, and turn it in to your trainer.

Table:

begin > caseless
"a" > "x"
"man" > "person"
"manage" > "handle"

Input:

A man can manage a manager.

Output:

__

Mod 3 Setting the Stage Before You Begin Page 27

8/1/96

Mod 4 Grouping Table Entries

COMMANDS/TOPICS COVERED

group incl excl
use

OBJECTIVES

At the end of this module, the student will be able to:

• draw a block diagram showing how control is passed from group to
group when given a change table containing three groups;

• modify and/or create a change table containing at least three groups
correctly using group , use , and incl or excl commands.

INSTRUCTION

1. Groups— Consistent Changes allows you to put table entries into
groups so you can control which entries are to be used under differ-
ent conditions. Each group is labeled with the command group im-
mediately followed by a unique name or number within parentheses
identifying that group. This command is on a line by itself with no
wedge or replacement argument:

group(1)

Here’s some additional information you should know about groups:

– although names or numbers may be used to identify groups, num-
bers will make the groups easier to find in a large table;

– when numbers are used as the group labels, they need not be con-
secutive but should be in ascending order for readability;

– a group ends at the start of the next group or at the end of the
table;

– there is a limit of 127 groups.

2. Use— Groups can be made active by the use command. The use

command is a replacement argument and is immediately followed
by the name or number of the group containing the search entries to
be used. The name or number identifying the group is in parentheses.

When CC begins, group(1) will be active unless otherwise specified

Page 28 International Publishing Services PAD-CCP

8/1/96

by a use command in the begin statement. If group(1) does not ex-
ist, then the group physically encountered first in the table will be ac-
tive.

Let’s discuss what is taking place in Figure 3.

By default, group(1) is the active group at the outset. CC operates
as if group(1) were the only group in the table. ’\’ and nl ’\’

are the only compares made of the input. When a backslash is found,
the replacement argument containing use(2) is performed. Now
group(1) is no longer active. Group(2) search entries will be the
only ones compared against the text until CC is instructed otherwise
by another replacement argument. Now CC searches the input for
’id’ , ’w ’ , ’n’ , or ’l’ .

If ’id’ is found in the input, a character string is sent to the output,
then group(3) becomes the active group. If ’w ’ is found, a new
line (nl) is sent to the output and group(1) becomes active again. If
’n’ or ’l’ is found, group(3) becomes the active group.

What is all of this accomplishing? When you follow the flow of
logic through the table, you will find that \id will cause a character
string to be sent to the output, \w will cause the word following it
to go to the output, and \n or \l will cause the characters following
them not to go to the output (due to the null match and omit com-
mand in group(3) which we will discuss later). This means that the
output will consist of only the \id information and a list of words,
each starting on a new line.

EXAMPLE

c WDLSTRIP.CCT Mod 1 20-JUN-89 (modified)
c Strips WDL.EXE output of everything
c except the words.

group(1) c send text to output until next sfm
 ’\’ > use(2) c SFM found
 nl ’\’ > use(2)

group(2) c identify sfm
 ’id’ > ’\id NIV 2 John words’ use(3)
 ’w ’ > nl use(1) c retain the word
 ’n’ > use(3) c strip the count
 ’l’ > use(3) c strip the reference

group(3) c strip unneeded elements
 ’\’ > use(2) c new SFM found
 endfile > endfile
 ’’ > omit

Fig. 3. WDLSTRIP.CCT Change Table

Mod 4 Grouping Table Entries Page 29

8/1/96

Figure 4. is a sample of what the input might look like and the result-
ing output.

If you can understand how our CC table can result in the output
shown from the above input, you may skip to point 3. below. If not,
let’s follow some of this input data through the change table.

Control starts with group(1) so we are comparing for a ’\’ or
nl ’\’ . We find that ’\’ matches the first character in the input.
The replacement side of that entry passes control to group(2) . (The
backslash that was matched was not replaced by the replacement ar-
gument, so it is not sent to the output.)

In group(2) we are comparing for ’id’ , ’w ’ , ’n’ , or ’l’ . The
next two input characters are id and match the first group(2) entry.
The replacement side sends ’\id NIV 2 John words’ to the out-
put and then passes control to group(3) .

Group(3) compares for the next backslash. If the next input charac-
ter is not a backslash, then the pointer is moved one character to the
right. (The commands used in the second and third lines of
group(3) , which cause the pointer to be moved, will be discussed in
a later module.) The next characters in the input consist of
<space>WDL<newline>\n<space>00001 ... Everything up to the \n

will be dropped, one character at a time—nothing will be sent to the
output.

When the backslash is encountered, nothing is sent to the output, but

EXAMPLE

Input Output

\id WDL \id NIV 2 John words
\n 00001 acknowledge
\w acknowledge Antichrist
\l 2JN 0:7 anyone
\n 00001 as
\w Antichrist
\l 2JN 0:7
\n 00003
\w anyone
\l 2JN 0:9,10,11
\n 00002
\w as
\l 2JN 0:6,7

Fig. 4. Sample Input and Output

Page 30 International Publishing Services PAD-CCP

8/1/96

control is again passed to group(2) to identify which SFM follows.
SFMs ‘n’ or ‘ l ’ result in control passing to group(3) to locate the next
backslash with still nothing going to output.

When a \w is encountered, the backslash matches in group(3) , con-
trol goes to group(2) , and the w matches. Then a nl (new line) is
sent to output and control goes to group(1) . The biggest difference
between group(1) and group(3) is that group(1) does not contain
an entry like the last entry in group(3) so input that is not matched
is passed to output.

The block diagram in Figure 5. is one more way of describing the
transfer of control from one group to another. There is one block rep-
resenting each group in the table. The arrows indicate the control
passing from group to group. The lines are labeled with the search
entry that must be matched for the transfer of control to take place.
For instance, when control is in group(1) , a backslash must be
matched for control to pass to group(2) ; in group(2) , a match on
’w ’ will pass control back to group(1) .

If you need more help, ask your trainer to step you through the flow.
It is important that you understand now how the input data causes
the control to be passed from one group to another.

3. Other features about groups
a. multiple groups active—More than one group can be active at a

time. This can be accomplished by specifying more than one
group in a use command:

EXAMPLE

search argument > use(2,10)

Notice that the groups are contained within the same set of paren-
theses and are separated by commas with no spaces in between.

group(1) group(3)group(2)
’\’ ’\’’n’

or
’l’

’w ’

Fig. 5. Block Diagram

Mod 4 Grouping Table Entries Page 31

8/1/96

b. search order when using multiple groups—In Mod 3, we learned
that search entries were sorted into descending order of length be-
fore the compares began. When groups are used, the entries of
different groups are not sorted together. Entries are sorted within
each separate group. When multiple groups are active, the groups
are used in the order in which they are specified in the use com-
mand.

In other words, the following table:

EXAMPLE

Group(1)
’search argument’ > use(10,2)

Group(2)
 ’c’ > ’replacement’ c entry 1
 ’ip’ > ’replacement’ c entry 2
 ’v’ > ’replacement’ c entry 3
 ’q2’ > ’replacement’ c entry 4

Group(10)
 ’:/o’ > ’replacement’ c entry 1
 ’\:_u’ > ’replacement’ c entry 2
 "’a" > ’replacement’ c entry 3

would result in the following order of compares—group(10) en-
tries 2, 1, 3; then group(2) entries 2, 4, 1, and 3.

c. beginning with groups other than the first group—The initially
active group can be changed from the first group to another
group (or groups) by specifying the group(s) in the begin state-
ment:

EXAMPLE

begin > use (1,10)

or
begin > use (2,5,66)

d. currently active groups list—The use command should not be
thought of as a “go to” command. Processing does not proceed
to the named group as soon as the use command is issued.
Rather, the use command merely updates a “currently active
groups list” which CC will later consult when it is ready to begin
a search for another match.

When two or more use commands occur within a replacement,
the currently active groups list will be updated each time a use is
executed, but only the final status of the currently active groups

Page 32 International Publishing Services PAD-CCP

8/1/96

list after the replacement is completely finished will determine
which group(s) will be active at the start of the next search.

4. Including and excluding groups
a. incl —The incl command is similar to the use command in that

it specifies one or more groups. However, rather than making
only the specified group(s) active (as in the use command), the
incl command tells CC to add the specified group(s) to the end
of the currently active groups list. This way you don’t have to
know exactly what groups are active—you just want a specific
one or more groups to be added to those that are active.

NOTE: A bug in CC version 7.4 causes a change table to malfunc-
tion when an already-active group is specified in the incl com-
mand. It is, however, proper to do this in CC version 7.5! In the
newer version, specifying an already-active group in the incl

command will result in that group being removed from the active
groups list, and then placed at the end of the list, thereby making
that group to be searched last if other groups are active.

b. excl —the excl command is the opposite of the incl command.
It ensures that the specified group(s) is(are) not active.

EXAMPLE

group(1)
"string A" > use(2,10)

group(2)
"string B" > excl(10)
"string C" > incl(10)
"string D" > use(1)

group(10)
"string E" > "string X"

5. In summary— To trace the steps that CC goes through each time the
input data is searched for a match:

– Check active groups list for which groups (and order) will be
used for comparing search strings to the input data;

– Change to lower case the first character after the search
pointer, if the table is in caseless mode;

– Find an exact match, testing strings from longest to shortest
within each group;

– Remove the matched string in its entirety from the input;
– Do all replacement actions specified by the match;
– Change to upper case the first character of the replacement

if the first character of the match had been previously changed
to lower case.

Mod 4 Grouping Table Entries Page 33

8/1/96

PRACTICE ACTIVITIES and QUESTIONS

1. By studying CAPCHK.CCT in Figure 6., trace the flow from group
to group for the following input text sequences. Don’t be con-
cerned about the commands we haven’t covered—just look at the
groups and entries with use .

Input Flow

\s God \ group(1) group(20) group(10) group(20)

\id MAT \ group(1) ___

\c 1 \ group(1) ___

’\’ ’\’’s’

C CAPCHK.CCT Mod 1 15-SEP-88
C (Modified for PAD-CCP Mod 4, May 1991, by K. Seitz)
C Locates sentence initial words not beginning with UC.
C You must modify store 1,2,3,5,&6 for your data!
C " " " group 1&20 " " "

begin >
store(1) ’ABCDEFGHIJLKMNOPQRSTUVWXYZ’ endstore C UC
store(2) ’abcdefghijlkmnopqrstuvwxyz’ endstore C lc
store(3) ’"/’ endstore C diacritics
store(4) ’1234567890’ endstore C numbers
store(5) ’ (<’ nl endstore C sent init punct
store(6) ’)>’ nl endstore C sent final punct
use(1)

group(1)
’\’ > use(20) C SFM found, check it out.
’.’ > next
’?’ > next
’!’ > set(1) use(10) C Final punct found,

C next should be U.C.
endfile > clear(1) endfile
’’ > clear(1) omit C Strip everything else

group(10) C 1st LETTER SHOULD BE UC
’\’ > use(20) C SFM was found
’*f’ any(2) ’*’ > ’’ C Footnote
any(3) > ’’ C a diacritic
any(5) > ’’ C opening punctuation
any(6) > ’’ C closing punctuation
any(1) > ’’ C an UC LETTER (modified for
any(2) > ’’ C a lc letter this example)

(continued on next page)

Fig. 6. CAPCHK.CCT

Page 34 International Publishing Services PAD-CCP

8/1/96

2. Before each of the following replacement actions, assume that
groups 2 and 10 (in that order) are active. What groups will be ac-
tive following each replacement action, and in what order?

a. use(1,10) ___

b. excl(2) incl(1) __

c. incl(2) ___

d. incl(1,10) excl(2) __

e. use(10,1) ___

Is there any difference in search order between a. and e. above? Why? _________

group(20) C PROCESS SFMs
’id’ > ’\id’ store(50) ’00’ endstore

store(60) ’00’ endstore
use(25)

’mt’ > next C An UC ltr should follow these.
’st’ > next
’pi’ > next
’qm’ > next
’p’ > next
’r’ > next
’s’ > set(1) use(10) C Next letter should be UC
’q2’ > next
’q’ > next
’m’ > use(1) C Next letter need not be UC
’c ’ > store(50) use(50) C Store these num’s
’c’ > store(50) use(50) C for the messages
’v ’ > ’v’ back(1)
’v’ > store(60) use(60)
’e’ > use(1)

group(25) C OUTPUT ID LINE
nl ’\’ > next
’\’ > nl use(20)

group(50) C PROCESS & STORE CHAP NO
any(4) > dup
’ ’ > endstore append(50) ’:’

 store(60) ’00’ endstore use(1)
nl > endstore append(50) ’:’

 store(60) ’00’ endstore use(1)

group(60) C PROCESS & STORE VERSE NO
any(4) > dup
’ ’ > next
nl > endstore if(1) use(10) endif

ifn(1) use(1) endif

Fig. 6 CAPCHK.CCT continued

Mod 4 Grouping Table Entries Page 35

8/1/96

c 7CHAR.CCTMod 2 15-JUN-90
c (Modified for PAD-CCP, May 1991, by K. Seitz)
c Search for ??? for sections to modify.
c Deletes words less than 7 chars. from output of WDL
c Assumptions:
c 1 All refs have been deleted from the file being read.
c 2 " page headings " " " " " " "
c 3 " reference counts " " " " " "
c 4 An id line has been inserted in the file being read.

begin > caseless
 store(Diac) "’_" ’"’ C ???diacritics
 store(Wd) ’’ C stores the word
 store(Chars) ’0’ C counts characters
 store(TotWds) ’0’ C counts total words
 store(DelWds) ’0’ C counts deleted words (1-6)
 store(RetWds) ’0’ C counts retained words (7 +)
 endstore

c HOUSEKEEPING
group(1)

’\id ’ > dup use(4) c retain id line
’\p’ > ifn(1) c keep first \p

 nl ’\p ’
endif
store(Chars) c set char counter to 0
’0’ endstore
set(1) store(Wd)
use(2)

nl > next c create a \p at 1st word
’ ’ > ifn(1) c create a \p at 1st word

 nl ’\p ’ endif
store(Chars) c set char counter to 0
’0’ endstore
set(1) store(Wd)
use(2)

endfile > do(Rep) c EOF is read.

c ^
c TEST THE LENGTH OF THIS WORD

group(2)
any(Diac) > dup c don’t count diacritics
nl > next c word is over;
’ ’ > endstore incr(TotWds) c word is over;

ifgt(Chars) ’7’ c ??? if over 7,
 out(Wd) incr(RetWds) c output it,
 nl
 else
 incr(DelWds) c else forget it!
endif nl back(1) use(1)

’’ > fwd(1) incr(Chars) c count this letter
endfile > endstore do(Rep)

(continued on next page)

Fig. 7. 7CHAR.CCT

Page 36 International Publishing Services PAD-CCP

8/1/96

3. List FIXEM.CCT and look through it. Notice that the group num-
bers are non-consecutive but are in ascending order. Notice the
use of comments to document the purpose of each group as well
as other uses.

4. Figure 7. contains 7CHAR.CCT. See if you can draw (in the space
below) a block diagram of the flow from group to group, such as
that in Figure 5. Again, don’t be concerned about the commands
we haven’t covered. Only look at the group and use commands.

READING ASSIGNMENT

CC User’s Guide: 16 excl, 17 group, 19 incl, 21 name, 25 use, 38-40 groups

c ^
c OUTPUTS THE \ID LINE

group(4)
nl > dup back(1) use(1)

c ^
c OUTPUT THE FINAL REPORT
c TO THE FILE AND THE SCREEN.

define(Rep) >
nl out(TotWds) " total words"
nl out(DelWds) " deleted words (less than 7 chars)"
nl out(RetWds) " retained words (7 + chars)"
endfile

 write nl
wrstore(TotWds) write " total words" nl

 wrstore(DelWds)
write " deleted words (less than 7 chars)" nl

 wrstore(RetWds) write " retained words (7 + chars)" nl

Fig. 7. 7CHAR.CCT continued

Mod 4 Grouping Table Entries Page 37

8/1/96

EXERCISES

1. On a separate sheet of paper to be handed in, draw a block dia-
gram of REFIND.CCT shown in Figure 8.

2. Look at WDLSTRIP.CCT (in Fig. 3. and on student disk).

a. First on paper, then on the computer, modify this file to

change every ‘a’ to an ‘x’ in the words. Words are marked by

\w. These are identified by matching ’w ’ in group(2) . Put

the orthography change (‘a’ to ‘x’) in group(10) .

b. Run CC using your table and input file STUDENT.WDL

c. After successfully completing CC with the desired results,

print out your table, put your name on it and hand it in.

3. You have an input file (SOMT.SFM) which must be changed be-
fore it can be run through our preprocessing. It contains the fol-
lowing SFMs: \b, \c, \id, \p, \s, \s2, and \v.

a. Write a table to accomplish the following:

– Change ‘\b’ to ‘\mt’, and retain all other SFMs
– In elements marked with \p, \s2, and \v, change ‘" ’ to ‘/’,

change ‘-u’ to ‘_u’, change ‘=’ to ‘-’, and change ‘:: ’ to ‘ : ’
(Hint: You should be able to do this using two groups. The only

replacement actions needed are character strings and group

C REFIND.CCT Mod 1 8-SEP-88
C (Modified for PAD-CCP, May 1991, by K. Seitz)
C Extracts all cross references.

begin > use(1)

group(1) C ^^^ FINDS SFMS ^^^^^^^^^^^^^^^^^^^^^^^^^^^
 ’\’ > use(2) C SFM found!
 endfile > endfile
 ’’ > omit

group(2) C ^^^ FIND ID LINES and CROSS REFERENCES ^^^
 ’id ’ > nl ’\id ’ use(3)
 ’r ’ > nl ’\r ’ use(3)
 endfile > endfile
 ’’ > omit use(1)

group(3) C ^^^ DUP ID LINES and CROSS REFERENCES ^^^^^
 nl ’\’ > next
 ’\’ > nl ’\’ back(2) use(1)

Fig. 8. REFIND.CCT

Page 38 International Publishing Services PAD-CCP

8/1/96

related commands.)

b. Run CC using your table and input file SOMT.SFM

c. After successfully completing CC with the desired results,

print out your table, put your name on it and hand it in.

Mod 4 Grouping Table Entries Page 39

8/1/96

Mod 5 Using Storage Areas

COMMANDS/TOPICS COVERED

store any
endstore command line running of CC

OBJECTIVES

At the end of this module, the student will be able to:

• modify and/or write a change table, correctly using any , endstore ,
and store commands;

• run CC, entering all file information needed on one line at the DOS

prompt.

INSTRUCTION

1. Storage Areas— In Mod 1, you were told that CC produces one out-
put file. This is true. However, you may also create some temporary
output areas called storage areas in computer memory. This is done
with a store command which is immediately followed by an identi-
fying name or number. The store command is used only on the re-
placement side:

EXAMPLE

"search argument" > store(name)

The store command redirects all output from this point on until it is
stopped with an endstore command. After a store command is in-
voked, all output—whether from the input file or from a character
string in the replacement side of the change table—will go to the
storage area indicated and not to the output file. It’s like switching a
train from one track to another.

Let’s look at some examples:

EXAMPLE 1

begin > store(vowels) ’aeiou’ endstore
. . .

EXAMPLE 2

group(1)
 "\s" > store(sect) use(2)
group(2)
 "\" > endstore "\" use(1)
. . .

Page 40 International Publishing Services PAD-CCP

8/1/96

EXAMPLE 3

group(1)
 "\" > endstore use(2)
group(2)
 "c" > store(chpt) use(1)
 "s" > store(sect) use(1)
 "r" > store(xref) use(1)

In the first example, a storage area called ‘vowels’ was opened as
part of the replacement side of the begin command. The character
string ‘aeiou’ following the store command would be placed into
the output. But where is output being directed now? The store com-
mand has directed output to the storage area called ‘vowels’ instead
of the output file. So the string ‘aeiou’ will be placed in the storage
area ‘vowels’.

The command endstore stops any further output from going to the
storage area ‘vowels’ and will send it instead to the output file. This
leaves storage area ‘vowels’ containing ‘aeiou’. We’ll discuss how
this can be used in a moment.

In the second example, when a "\s" is encountered in the input file,
a storage area called ‘sect’ is opened and then group(2) is made the
active group. All output is now being directed to storage area ‘sect’.
This means that all input text up to the next backslash will go into
storage area ‘sect’ rather than to the output file.

When the next backslash is encountered in the input, then the end-

store will stop further output from going into the storage area but
will send it to the output file.

The third example is like the second except that one of three storage
areas may be opened depending on the input. Input text following a
‘\c’ will go into storage area ‘chpt’ until the next backslash. Input
text following a ‘\s’ will go into storage area ‘sect’ up to the next ‘\’;
and input text following a ‘\r’ will go into storage area ‘xref’.

Here are some additional facts about storage areas:

– output can only go to one place—either the output file or one stor-
age area;

– a store command terminates any previous store command
which has not been terminated with an endstore , as shown in the
following example:

Mod 5 Using Storage Areas Page 41

8/1/96

begin > store(vowels) ’aeiou’
store(consonants) ’bcdfghjklmnpgrstvwxyz’
endstore

(Storing into ‘vowels’ is terminated by store(consonants) .)

– a store command clears the named storage area of any previous
contents. Consider the following:

store(book,chpt,verse) endstore

The effect of the above line would be to clear out the storage
areas named ‘book’, ‘chpt’, and ‘verse’. (These commands, with
the three storage names in sequence, are equivalent to saying
store(book) store(chpt) store(verse) endstore .)

– the storage area name can be any length and may contain alpha-
betic characters, numbers, or symbols other than spaces, commas,
or right parentheses;

– storage area names are case sensitive (store(\f) and store(\F)

would refer to two different storage areas);

– a storage area can hold any amount of data, dependent only on the
amount of computer memory available;

– the CC program has a limit of 127 storage areas.

2. any(name) — There are a number of uses for storage areas. One of
them is in conjunction with the command any followed by the name
of a storage area. The any command is used on the search side of a
change entry. Each of the characters in the named storage area will
be checked for a match in the input. Interpret it as meaning: if the
next single input character matches any single character in the
named storage area, you have a match!

EXAMPLE — CV.CCT

begin > store(vowels) "aeiouAEIOU"
store(consonants) "bcdfghjklmnpqrstvwxyz"

"BCDFGHJKLMNPQRSTVWXYZ"
endstore

any(vowels) > "v"
any(consonants) > "c"

This table will change the input text into v’s and c’s showing vowel
and consonant patterns. Input text will be matched one character at
a time. Each alphabetic character will be changed to a ‘v’ or ‘c’ and

Page 42 International Publishing Services PAD-CCP

8/1/96

each non-alphanumeric character such as spaces or punctuation will
be passed to the output file unchanged.

The any command can also be used as a part of a longer search argu-
ment:

EXAMPLE

begin > store(space) " " nl endstore
"Jesus" any(space) "Christ" > "Jesucristo"

In the above example, input text will now match whether the words
‘Jesus’ and ‘Christ’ are separated by a space or a new line.

The storage area name can also be repeated to indicate two or more
successive characters are required to match:

EXAMPLE

begin > store(space) " " nl endstore
any(space,space) > " "

Any combination of a new line or space followed by a new line or
space would match the above search argument and be replaced by a
single space.

3. Command line running of CC— Up to now you have run CC by keying
CC and pressing <ENTER> and then answering the prompt for the file
names. There is another way to run CC. All of the information can be
provided on one line at the DOS prompt. Following is the syntax to
use.

 C:\> CC -t change table name -o output name input name

There are two ways this can be beneficial. First, only the most sim-
ple CC tables yield the desired results the first time. During the de-
bugging of a change table (and, therefore, multiple executions of
CC), it is convenient to be able to bring back the last command en-
tered (with all the information needed) by pressing <F3> at the DOS

prompt (or the <UP> arrow if you are using NDOSEDIT). This saves a
lot of rekeying.

Secondly, this one-line format for running CC can be used from
within a batch file for more automated processing.

Instead of a single input file, CC will accept a file containing a list of
files as input to CC by preceding the file name with -i . All of the out-
put will go into one output file:

 C:\> cc -t change table name -o output name -i input list

Mod 5 Using Storage Areas Page 43

8/1/96

VOCABULARY and CONCEPTS

storage area—a temporary holding place for data in computer mem-
ory during the running of CC. When the program ends, informa-
tion in storage areas is no longer available.

PRACTICE ACTIVITIES and QUESTIONS

1. Below are three begin entries with replacement actions. Which
(if any) will accomplish the same thing? ___________

a. b.

begin > store(1) nl begin > store(1,2,3) nl nl nl
 store(2) nl endstore
 store(3) nl
 endstore c.

begin > store(1,2,3) nl
endstore

2. Included on your student disk is CONVOW.CCT. It is a more so-
phisticated version of the CV table used in the example in this
module. Review CONVOW.CCT—read the comments, think of
how it would be modified for different job data, look at the
grouped entries. You won’t know all the commands, but you
should understand some of them.

3. Run CC, providing all the file information on one line at the DOS

prompt. Use CONVOW.CCT just as it is and any text file for input.

READING ASSIGNMENT

CC User’s Guide: 11 any, 16 endstore, 21 name, 24 store, 28-29 Running CC

from Command Line, 30 store & endstore, 31-36 An Example of Storage

EXERCISE

1. Modify CV.CCT (the example used in this module—there’s a copy
on your student disk) so that it will also change any number (0–9)
to an ‘n’. Using any input file, run CC with a one-line entry at the
DOS prompt. (If you must alter your table and rerun CC, remem-
ber to use the <UP> arrow or <F3> to recall the line.) When fin-
ished, print out your table and turn it in.

2. EMCHEK.CCT (Fig. 9.—and on your disk) has been written using
numbers for names of storage areas. First, run CC with this table
as is, using EMLK.SFM on your disk as input. Then modify the

Page 44 International Publishing Services PAD-CCP

8/1/96

table to use descriptive words for storage area names. Rerun CC

giving your output a different name. Compare your outputs. They
should compare equal. When finished, print out your modified ta-
ble and turn it in. (Note: arguments of the out command, as will
be learned later, are storage area names.)

3. Write a table to change all occurrences of ‘Book of Acts’,
whether the words are separated by a space or a new line, to
‘Acts of the Apostles’ with spaces between each word. Run CC

using BOOKACTS.TXT as input, print your table, and turn it in.

C EMCHEK.CCT Mod 1 13-MAR-84
C Modified for PAD-CCP Mod 5, May 1991, by K. Seitz
C finds sequences of \m followed by no text

begin > store(1) ’00’ endstore
store(2) ’00’ endstore
store(3) ’1234567890’ endstore
store(4) ’ ’ nl endstore
clear(1) use(1)

group(1)
 ’\id’ > nl ’\id’ use(2)
 ’\c ’ > next
 ’\c’ > store(2) ’00’ endstore C clear verse number
 store(1) use(4)
 ’\v ’ > next
 ’\v’ > store(2) use(5)
 ’\m ’ > next
 ’\m’ nl > use(3)
 endfile > ifn(1) ’no \m errors’ nl endif endfile
 ’’ > omit

group(2) C Complete id line
 ’\’ > nl ’\’ back(1) use(1)

group(3) C Check for \pqrs
 ’\v’ > dup back(2) use(1)
 ’\’ > set(1) ’\m error in ’ out(1) out(2) nl
 ’\’ back(1) use(1)
 any(4) >
 ’’ > omit use(1)

group(4) C Complete ch no
 any(3) > dup
 any(4) > ’:’ endstore use(1)

group(5) C Complete vs no
 any(3) > dup
 any(4) > next
 ’’ > endstore use(1)

Fig. 9. EMCHEK.CCT

Mod 5 Using Storage Areas Page 45

8/1/96

Mod 6 Matches Conditioned by Environment

COMMANDS/TOPICS COVERED

prec wd
fol display/debugging option

OBJECTIVES

At the end of this module, the student will be able to:

• demonstrate an understanding of matched string versus matched envi-
ronment by correctly providing the output resulting from given table
entries and input text;

• modify and/or write change tables correctly using any , prec , fol ,
and wd commands;

• run CC in display/debugging mode and provide answers to questions
concerning the displayed information.

INSTRUCTION

1. Precede, Follow, and Word Commands— These commands are similar
to the any command in that they also reference a storage area which
must have been previously loaded with characters. Also like the any

command, these commands are used on the ‘search’ side, and each
occurrence of the commands represent any one of the characters in
the storage area. But unlike the any command, these commands do
not actually constitute part of the match but are considered ‘environ-
mental’ commands. Let’s look at each:

a. Precede or prec(name) —This command is used along side the
character string that is being searched for. For the search string to
be considered a match, not only must the search string match the
input text starting at the search pointer, but the single character in
the data stream preceding the matched characters (i.e., the first
character left of the search pointer) must also be contained in the
named storage area.

 EXAMPLE

begin > caseless
store(condition) "aeiou" endstore

"ft" prec(condition) > "th"

Any ‘ft’ in the input text which is preceded by a vowel will be
changed to a ‘th’. Notice that, even though the condition we are

Page 46 International Publishing Services PAD-CCP

8/1/96

specifying must occur before the character string, the command
prec(name) can be placed either before the character string, or
between the character string and the wedge.

b. Follow or fol(name) —This command works the same way as
prec(name) except that the input string matching the search
string must be followed by a character contained in the named
storage area. The fol command must be placed between the char-
acter string and the wedge.

 EXAMPLE

begin > caseless
store(endings) " " nl ".,?!’;" ’"’
endstore

"ing" fol(endings) > "in’"

The storage area ‘endings’ is loaded with the characters which
would indicate the end of a word. Any word ending in ‘ing’ will
be changed to end in “ in’ ” .

c. Word or wd(name) —As you have probably guessed, the wd com-
mand combines prec and fol . To be considered a match, the in-
put text must match the search character string, and the character
preceding and the character following the string must be among
those contained in the named storage area. The wd command
must be placed between the character string and the wedge.

 EXAMPLE

 begin > caseless
store(boundaries)
" " nl ".?!,;‘’" ’"’
endstore

 "the" wd(boundaries) > "a"

Every occurrence of the word ‘the’ would be changed to the
article ‘a’; the characters ‘the’ when a part of a larger word
(i.e., them, breathe, father) would not be changed.

2. Differences between any and prec , fol , wd— There are a number of
differences between any and these other commands:

Any(name) can be used by itself as the search argument; whereas
prec(name) , fol(name) or wd(name) must always be used in con-
junction with a search argument.

EXAMPLE

any(space) > nl
"the" prec(space) > nl "the"

Mod 6 Matches Conditioned by Environment Page 47

8/1/96

Any(name) is placed within the search argument at the location
representing the actual character of input text it is to match;
prec(name) , fol(name) and wd(name) must always be placed be-
tween the matched sequence and the wedge (prec can also be placed
before the matched sequence instead).

EXAMPLE

"big" wd(space) > "large"
"big" any(space) "bad" > "big bad"

The input character matching the any(name) command is a part of
the matched string and will be affected by the replacement argu-
ment. But input characters represented by the prec(name) ,
fol(name) or wd(name) commands are NOT considered to be a part
of the matched string. These preceding and/or following characters
only set the environment surrounding a match—they are not in-
cluded in the match itself. Therefore, these characters will not be af-
fected by the replacement argument.

This difference is important enough to warrant a closer look.

EXAMPLE 1

 begin > store(space) " " nl
endstore

 any(space) "Jesus" any(space) > "*Jesus*"

EXAMPLE 2

 begin > store(space) " " nl
endstore

 "Jesus" wd(space) > "*Jesus*"

Input text: The Bible says that Jesus is the way, the

 truth, and the life.

To satisfy the search argument containing any in example 1, the
search pointer must be positioned as follows; the matched string is
circled:

The Bible says that Jesus is the way, the truth, and
the life.

 search pointer

The spaces before and after ‘Jesus’ are part of the match. The output
file will read:

The Bible says that*Jesus*is the way, the truth, and
the life.

To satisfy the search argument containing wd in example 2, the

Page 48 International Publishing Services PAD-CCP

8/1/96

search pointer must be positioned as follows; the matched string is
circled:

The Bible says that Jesus is the way, the truth, and
the life.

 search pointer

The spaces before and after ‘Jesus’ are not part of the match. The
output file will read:

The Bible says that *Jesus* is the way, the truth, and
the life.

3. Display or debugging option (/d) — As you can see, a Consistent
Changes table can easily become rather complex and tricky. Some-
times it’s difficult to tell just what entries are being matched, what
changes are being made, or what route or path is being followed
through the table. Maybe all you know for sure is that you aren’t get-
ting the desired results!

For this reason, the program contains a feature that will let you see
on the screen some of the actions which are taking place as the pro-
gram is running. This is the display or debugging option. It works
best when ANSI.SYS is installed (consult a DOS knowledgeable per-
son about this). The display option is activated by adding /d after
the name of the change table before you press <ENTER>, or by using
the following command at the DOS prompt:

 C:\> CC -t change table name/d -o output name input name

The program will list on the screen the names of all storage areas,
switches*, groups, and defines* in the table (and a number which
CC has assigned to each of them). Each name is listed on a separate
line. If your table has many, you may need to press <CTRL/S> or
<PAUSE>to stop them from scrolling off the screen if you want to see
them.

The display will stop at the first match that is made. For each match,
the display will show:

– the name and contents of any storage area being stored into,

– one line showing 35 characters of the output and 35 characters of
the input—with the matched string in reverse video,

Mod 6 Matches Conditioned by Environment Page 49

8/1/96

* These features are covered later in the course.

– another line showing the same text after the replacement side has
been performed,

– a listing of all the groups that are active and all the switches that
are set,

– the name and contents of the currently open storage area (if any)
after the match has been completed.

The display will show this same information for each match that is
made. Initially, the display will stop at each match until you press
any key to continue. But at any stop you may press <ESC> (escape)
and it will continue to process matches and scroll the display infor-
mation on the screen. Pressing any key will again put the action into
stopping at each match. Pressing <CTRL/C> will terminate the CC pro-
gram if desired.

For a visual feature such as this, you will understand it best by using
it. Some of the practice activities have been designed to familiarize
you with the operation of the display option.

VOCABULARY and CONCEPTS

<CTRL/S>—pressing the <CTRL> key and the ‘s’ key at the same
time will stop the information on the screen from scrolling off.
Pressing any key will cause the scrolling to resume.

PRACTICE ACTIVITIES and QUESTIONS

1. Using the following change table for each input: 1) draw the loca-
tion of the search pointer at the time of a match, 2).circle the
matched string, and 3) write the final output text.

CHANGE TABLE

begin > store(space) " " nl
 store(bound) " " nl "‘’?!.,;:" ’"’
 endstore

"do" any(space) "not" > "don’t"
"already" wd(bound) > "all ready"
"semi" prec(bound) > "bi"
any(bound) "couldn’t" any(bound) > "could not"
"wouldn’t" wd(bound) > "would not"

Page 50 International Publishing Services PAD-CCP

8/1/96

 INPUT TEXT OUTPUT TEXT

a. I do not care.

 search pointer

b. I am already.

 search pointer

c. The semiannual news...

 search pointer

d. He couldn’t go.

 search pointer

e. He wouldn’t go.

 search pointer

2. Write in the appropriate entries to accomplish the following
(including any necessary begin entry):
– change every ‘(’ followed by a number to ‘[’,
– change every ‘)’ preceded by a number to a ‘]’.

__

__

__

3. Write in the appropriate entries to accomplish the following (in-
cluding any necessary begin entry):
– for every ‘)’ followed by a letter or number, output ‘)***’ in

place of the ‘)’,
– for every ‘(’ preceded by a letter or number, output ‘***(’ in

place of the ‘(’,
– for every ‘(’ followed by any type of space, nl , or closing

punctuation, output ‘(***’ in place of the ‘(’.

__

__

__

__

__

Mod 6 Matches Conditioned by Environment Page 51

8/1/96

4. List RESPEL.CCT and look at the uses of any and fol in
groups(40) through (49).

5. Run CC in display mode using RESPEL.CCT as the change table
and RESPEL.TXT as the input. Be ready to press <CTRL/S> or
<PAUSE> immediately after entering the change table name fol-
lowed by /d. (If you weren’t fast enough, use <CTRL/C> to abort
the program and try again.) Answer the following questions:
a. How many stores are there? _______________

b. What is the maximum number of changes allowed? ______

c. List the first five group sets that become active.

__

d. When an entry containing fol is matched, is the character sat-

isfying fol (as in El’ia fol(endword)) highlighted?___

e. Is the character satisfying any (as in Eja any(sp) cumu)

highlighted? ________

READING ASSIGNMENT

CC User’s Guide: 17 fol, 23 prec, 25 wd, 27 Debug

EXERCISES

1. Combine the table entries you wrote for Practice Activities 2 and
3 into one table. Run CC in display mode using this table and in-
put file PAREN.TXT. Check your results. When finished, print
your table and turn it in.

2. Modify RESPEL.CCT to make the following additions:
(HINT: read carefully the comments preceding group(40) & (70) .)

a. change ‘yyy’ to ‘zzz’ when it occurs at the end of a word;

b. change ‘xx’ to ‘hx’ when it occurs at the beginning of a word;

c. change the word ‘text’ to ‘test’;

d. There is already an entry for "p-uga" any(sp) "ni" .

Add a similar entry that will match on the same string except

that it will also find any ‘endword’ punctuation between

‘p-uga’ and the space. Don’t alter the replacement.

Run CC using RESPEL.TXT as input; check your results; print your

table and hand it in.

Page 52 International Publishing Services PAD-CCP

8/1/96

Mod 6 Matches Conditioned by Environment Page 53

8/1/96

Mod 7 Getting it Out of Storage

COMMANDS/TOPICS COVERED

out outs append

OBJECTIVES

At the end of this module, the student will be able to:

• demonstrate an understanding of append , out , and outs by identify-
ing the correct output from specific table entries and input text;

• modify and/or write tables correctly using append , out , and outs .

INSTRUCTION

1. Outputting storage area contents— So far we have discussed how to
direct output text to a storage area, and some ways to compare input
text to the contents of a storage area. Now we’ll show you how to
direct the contents of a storage area to the output file or to another
storage area.

a. out(name) —The out command will cause the contents of the
named storage area to be placed into the output file. It does not
clear the storage area, but leaves the contents unchanged. You
might think of it as putting a copy of the storage area contents
into the output file. The out command stops any current storing
and switches the output flow to the output file. Since it is an ac-
tion to be taken, it is used on the replacement side.

Let’s consider what is needed to handle text where dropped chap-
ter numbers are embedded within the first two lines of the para-
graph. Here the chapter must follow any section head which
might precede that paragraph. This would require changing the se-
quence of chapter numbers and section heads, as illustrated in the
following example:

EXAMPLE (Place chapter numbers AFTER section heads for dropped chapter numbers)

group(1)
 "\c " > store(chpt) "\c " use(2) c store chpt;chk next

group(2)
 "\s " > endstore "\s " use(3) c output sect. first.
 "\" > out(chpt) "\" use(1) c chpt not followed by

c sect—output chpt
group(3)
 "\" > out(chpt) "\" use(1) c put chpt after sect.

Page 54 International Publishing Services PAD-CCP

8/1/96

In this example, a storage area named ‘chpt’ is opened each time
a ‘\c ’ is encountered in the input text. A ‘\c ’ is output to the
storage area and group(2) becomes active. All text following the
SFM (a chapter number and new line) up to the next backslash
also goes to the storage area.

If the next text element is a section head ‘\s ’, then endstore

sends all subsequent output to the output file. A ‘\s ’ is output,
and group(3) becomes active. There the rest of the section head
is output until the end is found at the next ‘\’. Then out(chpt)

copies the chapter element stored in ‘chpt’ to the output file, and
searching continues in group(1) for ‘\c ’.

If the text element following the chapter number is not a section
head (\s),then the input text will match on the single backslash in
group(2) . At this point out(chpt) ends storage and copies the
‘chpt’ contents (‘\c ’, a chapter number, and new line) to the out-
put file, keeping the original order as in the input text. Searching
continues in group(1) for ‘\c ’.

b. outs(name) —This command is identical to the out command
except that it does not stop any storing which is currently taking
place. In other words, it does not switch the flow of the output.
One of the important aspects of this is that it allows you to move
data from one storage area to another.

 EXAMPLE (Set up ending and beginning chapter number storage areas)

 group(1)
 "\c " > store(oldchp) outs(newchp) store(newchp)
 "\" > endstore

 "@hdr endchp = " out(oldchp)
 "@hdr newchp = " out(newchp)

When a new chapter number is encountered (\c), the character
string stored in the current chapter storage area (newchp) is
transferred to the old chapter storage area (oldchp). This transfer
is a two-step process: first, the store(oldchp) command
switches the output flow to the ‘oldchp’ storage area; then the
outs(newchp) command copies the ‘newchp’ storage contents
into the output flow, putting it into ‘oldchp’.

If the store(oldchp) command had not been given, the
outs(newchp) command would have sent the ‘newchp’ storage
contents to the output file. Note that if out had been used instead
of outs , it would not have made any difference whether the
store(oldchp) command was there or not because out would
have terminated the store before outputting anything. So the

Mod 7 Getting it Out of Storage Page 55

8/1/96

‘newchp’ contents would have gone to the output file.

In the example as it is written, what terminates the
store(oldchp) command? (Answer: store(newchp))

2. Adding on to storage with append(name) — The append(name) com-
mand is quite like the store(name) command except that it does not
clear out the storage area. It can be used to add more text to the con-
tents of a storage area.

The following example is an abbreviated change table to be run on
Scripture text. Expected SFMs in the input include \id (followed by a
three-character book name and possibly other information), \c, \s, \p,
and \v. Any other SFM will be considered an error. The output will
be all of the input text plus error messages for unexpected SFMs—
giving the book, chapter, and verse where it was found. This exam-
ple shows a use of the append command as well as additional uses
of out :

EXAMPLE (to reference error messages)

 group(1)
 "\id " > "\id " store(book) use(2) c begin book store
 "\c " > "\c " store(chpt) use(3) c begin chpt store
 "\s " > "\s " c protect known SFM
 "\p" nl > "\p" nl c protect known SFM
 "\v " > "\v " store(verse) use(4) c begin verse store
 "\" > "***unknown SFM found at " c output error msg
 out(book,chpt,verse) c for unknown SFMs
 "***" nl "\" c with reference

 group(2) c find end of \id book name
 " " > " " endstore c output book name
 out(book) use(1)

 group(3) c find end of chapter number
 nl > endstore
 out(chpt) nl c output chapter #
 append(chpt) ":" endstore c add colon to chpt
 use(1) c for error msg

 group(4) c find end of verse number
 " " > endstore out(verse) " " c output verse #
 use(1)

Your practice activities will make use of this example to help you un-
derstand it better.

Page 56 International Publishing Services PAD-CCP

8/1/96

PRACTICE ACTIVITIES and QUESTIONS

1. Using the preceding example, explain what will happen when
‘\q’ is encountered in the following input text:

INPUT

\id MAT Example
\c 1
\s The Genealogy of Jesus
\p
\v 1 A record of the genealogy of Jesus Christ, the son
of David, the son of Abraham:
\q
\v 2 Abraham was the father of Isaac, ...

Write out below what the output would be for this segment of text.

__

__

__

__

__

__

__

__

__

2. Run CC using table MOD7PRAC.CCT (a disk copy of the above ex-
ample) with MOD7PRAC.SFM as input, and check the output
against your answer for 1. above. (If it is different, try running it
in display mode and stepping through it.)

3. ‘\q’ is a legitimate SFM; write in below the entry needed to treat it
the same as a ‘\p’.

__

READING ASSIGNMENT

CC User’s Guide: 11 append, 22 out & outs, 30 append, 31 out & outs

EXERCISES

1. Fig. 10 below shows the part of a table which prepares verse num-
bers for Ventura. What will be the output for the following texts
(write your answers on the paper for Exercise 2):

Mod 7 Getting it Out of Storage Page 57

8/1/96

INPUT OUTPUT

\v 2 <space> ________________________

\v 3-5 <space> ________________________

\v 6a <space> ________________________

\v 6b-7 <space> ________________________

\v 10,11 <space> ________________________

\v 42 <space> ________________________

2. We want to know the sequence of the SFMs in an input file. Write
a table that will do the following:

a. output all of the id line (from \id to the next \);

b. at \e, output ‘End of Book ’;

c. at \c, \mt, \m, \p, \q, \r, and \s, accumulate in a storage area the

SFM (without the backslash) that was found, followed by a hy-

phen (e.g., mt-c-s-r-p-...). These should continue to add on un-

til step d. below;

d. at \v, output the stored sequence, a nl , and clear the store;

e. strip all other text. (This requires a couple commands we ha-

ven’t covered, so group(1) is provided for you below.)

group(1)
’\’ > use(2) c finds start of SFM
endfile > endfile c terminate program at end
"" > omit c strips all else

f. Run CC using this table and HDJN.SFM for input. Print your

table and hand it in.

begin > store(NBHy) "_" c Underline; NoBreakHyphen
 store(VP) "9" c Verse Point Size
 store(VJ) "250" c Verse baseline Jump
 store(sp) " " nl c Space characters

 endstore
...
group(1)
’\v ’ > store(VsNum)
 use(3)
group(3)
’-’ > append(VsNum) outs(NBHy)
any(sp) > endstore

 ’<BP’ out(VP)
 ’J’ out(VJ) ’>’
 out(VsNum) ’<PDJ0>’ use(1)

Fig. 10. Verse Number Attributes for Ventura

Page 58 International Publishing Services PAD-CCP

8/1/96

Mod 7 Getting it Out of Storage Page 59

8/1/96

Mod 8 Moving Text On Through

COMMANDS/TOPICS COVERED

dup endfile null
next omit

OBJECTIVES

At the end of this module, the student will be able to:

• demonstrate an understanding of the use of nulls by identifying right
and wrong table entries;

• modify and/or write tables correctly using dup , next , nulls, and omit ;
• write a statement in his own words on how to avoid getting into a

loop with a null search.

INSTRUCTION

1. Duplicating the matched string into the output with dup— Up to now, if
we wanted matched text to be sent to output we accomplished this
by repeating the matched character string on the replacement side of
an entry. But there is an easier way.

When input text matches a search argument, not only is it removed
from the input text, but it is also copied to a “match buffer.” Every
time you use dup within that replacement argument, a copy of the
match buffer is sent to the output. As implied, this command is used
only on the replacement side.

EXAMPLE 1

group(1)
"\c" > dup use(2)

Example 2

begin > store(space) " " nl
endstore

"Jesus" any(space) "Christ" > store(text) dup
endstore

In the first example, matching on ‘\c’ is used to trigger a change in
active groups. The matched string (\c) is sent unchanged to the out-
put file with dup .

In the second example, because of the use of any , the exact match-
ing text is unknown. There could be a space or a new line between
the words. In order to send it to output unchanged, dup is essential.

Page 60 International Publishing Services PAD-CCP

8/1/96

Notice that in the replacement argument in this example a storage
area is first opened, and then the matched string is copied into it
from the match buffer using the dup command.

Remember in using the commands prec , fol , or wd that the charac-
ters required by these commands are not a part of the matched string
and therefore cannot be placed into the output using the dup com-
mand.

EXAMPLE

begin > store(wdbound) " " nl ".,;’‘!?"
endstore

"Jesus" wd(wdbound) > dup

Only the word ‘Jesus’ will be sent to output, and not the character on
either side of it.

2. A simple shortcut using next — Sometimes you may have a number of
consecutive search entries which all have the same replacement argu-
ment. Rather than entering the same replacement side for each line,
the next command may be used for the replacement side for all but
the last one. Remember, they must be consecutive and the replace-
ment argument identical.

EXAMPLE

begin > store(sp) " " nl endstore
any(sp,sp,sp) > next
any(sp,sp) > next
any(sp) > nl "The next word is:"

Whether 1, 2, or 3 spaces are encountered, the replacement will be a
‘new line’ and the message ‘The next word is:’.

3. Recognizing the end of file with endfile — It is often useful to detect
the end of the input text. This is done by using the endfile com-
mand on the search side of an entry to match on the ‘end of file’.
Two principle reasons for using the endfile command are:

a. performing finishing up tasks at the end of input files, such as
report summaries or outputting the remainder of a record, and

b. preventing infinite loops where null matches are used, as de-
scribed later in this module.

The replacement argument may contain actions to take before the
program stops, including outputting messages or doing other finish-
ing tasks. The replacement side must either contain an endfile to
output an ‘end of file’ or a use command that will transfer control to

Mod 8 Moving Text On Through Page 61

8/1/96

another group where an endfile will be output. The program will
not end after matching on endfile until an endfile is output.

The simplest usage would be:

endfile > (actions if needed) endfile

On rare occasions it may not be necessary to process all of an input
file. In such cases, endfile can be used as a replacement argument
to end the program before the end of file is reached on the input file.

4. Bypassing or dropping text with omit — There are times when it is nec-
essary to eliminate a certain number of input characters from the
data stream without being processed. The omit command removes
characters from the input immediately to the right of the search
pointer and discards them. They will not be available for matching at
a later time.

The omit command is followed by a number in parentheses, specify-
ing the number of characters to be omitted. When omit is used with-
out such a parenthesized number, the number one is the default. This
command is used only in the replacement side.

EXAMPLE

"***" > omit(50)

The above line would cause the next 50 characters following *** to
be omitted from the processing and from the output.

5. The use of nulls— A ‘null’ in CC is written as two delimiters with
nothing in between: ’’ or "" . It has a use on both the search side
and on the replacement side. If certain cautions are not heeded, it
can cause an endless loop when used on the search side.

a. Replacement side null—A null on the replacement side simply
means that a ‘nothing’ will be output. It is usually shown on the
replacement side only for human readability.

 EXAMPLE

"text string" > "" use(10)
"text string" > use(10)

Both of the above lines have the same result—in each case, noth-
ing is sent to output.

b. Search side null—Using a null as a search argument means
“match on ‘nothing’ ” . A null (or ‘nothing’) has a length of zero
characters, therefore, CC will attempt to match it last when all en-

Page 62 International Publishing Services PAD-CCP

8/1/96

tries are sorted by length. A null will always match the zero-
length ‘nothing’ between the search pointer and the first character
to the right of it.

 EXAMPLE (drop everything but the section heads)

group(1)
 "\s" > dup use(2)
 "" > omit(1)
group(2)
 "\" > use(1)

In group(1) of the above example, unless the two characters to
the right of the search pointer are ‘\s’, the null search entry will
match on a ‘nothing’ to the right of the search pointer.

 EXAMPLE

Input text:

\id MAT ...

 search pointer

The data stream would first be compared with ‘\s’. Since that
would not result in a match, the data stream would then be com-
pared with a ‘nothing’. The ‘nothing’ between the pointer and the
‘\’ does match, the ‘nothing’ is removed from the data stream
causing the pointer to (still) point before the ‘\id...’, and the re-
placement instructions are performed. The first instruction in the
replacement is omit(1) , which causes one character to the right
of the search pointer (the ‘\’) to be removed from the data stream.
With the search pointer now pointing before the ‘id...’ the search-
ing for a match continues.

c. Nulls and endfile —After all the input text has been read, there
will still be one more character, the end of file, in the input. Here
it is necessary to prevent a null search entry from matching the
null located between the search pointer and the end of file charac-
ter, since a null search entry will match anywhere. This would be
an appropriate time to use the endfile entry described above to
match the end of file and send an endfile character to the out-
put, ending the program.

d. Nulls in multiple search groups—When searching for a null
while multiple groups are active (e.g. use(1,10,20)), be sure
only the last active group has the null entry. If it is located in any
other group, subsequent groups will never be searched since the
null will have already been matched.

Mod 8 Moving Text On Through Page 63

8/1/96

e. CAUTION ! ! ! The endless loop—As just seen, when a null
search argument matches on a ‘nothing’, no forward progress is
made by the search pointer. Therefore, to prevent the null search
from matching at the same spot again (and again, and again...),
you must either: 1).include a replacement side command such as
omit , or fwd (see next module) that forces the pointer to move, and
an endfile > endfile entry to terminate the program should
the input data run out, or 2).include a replacement side use com-
mand to switch groups to one where a valid match can occur.

Otherwise, the program may be stuck in an endless loop with no
escape but <CTRL/ALT/DEL>!

VOCABULARY and CONCEPTS

<CTRL/ALT/DEL> —Pressing <CTRL>, <ALT>, and keys at the
same time will cause the computer to reinitialize. This is called a
warm boot.

loop—When a program’s logic leads it into a circular path, execut-
ing the same set of instructions over and over with no change or
advancement, it is in a loop. It will continue cycling through
those same instructions without end. The program must be termi-
nated with <CNTL/ALT/DEL>. Then find and change the erroneous
logic in the change table and rerun CC.

PRACTICE ACTIVITIES and QUESTIONS

1. Write an entry that will force a match and remove the next charac-
ter from the input if no other entry matches the data.

2. Write an entry that, when used along with a null match entry, will
match at the end of the input file and terminate the CC program,
thus preventing an endless loop.

3. Write the replacement side which will cause the match to be writ-
ten to the output.

 any(sp) > ___

4. Will any of the following entries cause a problem? Why?
a. "" > omit

b. "" > use(2)

c. "" > ""

Page 64 International Publishing Services PAD-CCP

8/1/96

__

__

__

5. List TAGTOSFM.CCT and look at the uses of dup , next , nulls,
and omit .

READING ASSIGNMENT

CC User’s Guide: 15 dup, 16 endfile, 21 next, 21 null match or replacement,

22 omit, 34 endfile (bottom of page)

EXERCISES

1. Write a table which will do the following:
– write the \id line to output;
– strip all other SFMs (but not the text following them);
– strip all Ventura tags (i.e., strip all strings that begin with ‘@’

and end with ‘<space>=<space>’);
– strip all Ventura text attributes (i.e., strip all strings that begin

and end with angle brackets: ‘< . . . >’).
Use two groups. One of the groups will contain all of the ‘end of

string’ elements (i.e., ‘ = ’, ‘>’, ‘ ’, and ‘new line’).

Use nulls, dup , next , and omit to the fullest extent.

Run CC using FRUME.TXT as input, and check your output.

When finished print your table, and hand it in.

2. Modify your change table written for Exercise 1 to replace the
‘\p ’ SFM and the ‘@par = ’, ‘@par–fol–sect = ’, and
‘@par–fol–chp = ’ Ventura tags with ‘**para** ’ (while
still stripping all other SFMs and tags). Again run CC using
FRUME.TXT as input and check your output. Print your table and
hand it in after completing Exercise 3.

3. At the bottom of your Exercise 2 printout, write out a statement
from memory of how to avoid getting into an endless loop with a
null search.

Mod 8 Moving Text On Through Page 65

8/1/96

Mod 9 Going To And Fro

COMMANDS/TOPICS COVERED

fwd what can be searched for
back what can be sent to output

OBJECTIVES

At the end of this module, the student will be able to:

• demonstrate an understanding of back and fwd by answering ques-
tions concerning specific input and table entries;

• modify and/or write tables correctly using back and fwd ;
• list from memory at least 3 of the 4 types of items which can be

searched for and 4 of the 5 types of items which can be sent to output.

INSTRUCTION

1. Sending input directly to output with fwd — The fwd command is quite
similar to omit except it forwards the number of input characters
specified in its parenthesized argument directly to output rather than
omitting them. When no number is specified following fwd , the num-
ber one is the default.

To illustrate, look at the command fwd(3) . This command causes
the first three characters to be removed from the input (the right side
of the search pointer), and placed unchanged into the output (the left
side of the search pointer).

EXAMPLE

"\id " > fwd(3) c forward book name to output

Data stream at time of match: \id MAT Quechua ...

 search pointer

After match, before replacement: MAT Quechua ...

 search pointer

After replacement: MAT Quechua ...

 search pointer

Page 66 International Publishing Services PAD-CCP

8/1/96

The most useful purpose of the fwd command is when it is used in
the replacement side of a null match to move one character of the in-
put directly to the output. The search pointer essentially moves one
character, thus preventing an endless loop.

2. Retrieving output with back — In the same manner as fwd sends input
directly to output, back sends the specified number of characters of
the output back into the input for reprocessing. The characters will
be removed from the output just to the left of the search pointer and
placed unchanged in the input just to the right of the search pointer.
Again if no number of characters is specified with back , the default
is one.

Let’s look again at an example similar to the one used in Mod 7:

EXAMPLE

group(1)
 "\id " > dup store(book) fwd(3) c begin book store

 " " endstore out(book)
 "\c " > dup store(chpt) use(2) c begin chpt store
 "\s " > dup c protect known SFMs
 "\p " > dup
 "\v " > dup store(verse) use(3) c begin verse store
 "\" > "Unidentified SFM found at " c send error msg

 out(book,chpt,verse) c for unknown SFM
 c with ref

group(2)
 "\" > endstore out(chpt) c end chpt store

 append(chpt) ":" c add colon after
 endstore c chpt no.

 dup back(1) use(1) c retrieve backslash
group(3)
" " > endstore out(verse) c keep verse no.

 dup use(1) c in output

The last line of group(2) uses the back command. Why is it used
here? It is because the ‘\’ entry in group(2) will match the first
backslash in the input text following a chapter number element, sig-
naling the start of a new SFM. Once it is matched, the backslash is
removed from the input text and is unavailable for further matching.
Unfortunately, it is still needed in the input string in order to cor-
rectly identify the subsequent SFM in group(1) !

To make the ‘\’ available for matching again, it must first be placed
into the output by the dup command so that it can then be retrieved
from the output and returned to the input with back(1) for reproc-
essing.

Let’s step through the commands in this example table using the

Mod 9 Going To And Fro Page 67

8/1/96

data stream "...him. \c 2\s Jesus..." , starting with the search
pointer positioned before the chapter SFM while group(1) is active:

" ...him. \c 2\s Jesus..."

Again the characters to the right of the search pointer in this data
stream are input text characters, copied into the data buffer from the
original input file. The underlined characters to the left of the pointer
are output text characters, which will ultimately be copied to the out-
put file.

Searching the entries in group(1) , the "\c " entry will match the
input text:

" ...him. \c 2\s Jesus..."

The matched text is removed from the data stream:

" ...him. 2\s Jesus..."

In the replacement for "\c " , dup will copy the ‘match buffer’ to
the output, store(chpt) will divert all future output to the ‘chpt’
storage area, and use(2) updates the currently active groups list:

" ...him. \c 2\s Jesus..." ‘chpt’: (empty)

With that replacement finished, CC is ready to do a new search.
Checking the active group list it finds group(2) active. However, it
does not find a match in group(2) . Therefore exactly one character
is removed from the input (as though it had matched) and an identi-
cal character is placed in the output (which has been redirected to
‘chpt’!):

" ...him. \c \s Jesus..." ‘chpt’: 2

Before looking for the next match, the active group list must be con-
sulted, and it says to (still) use group(2) . The ‘\’ entry matches the
input:

" ...him. \c \s Jesus..." ‘chpt’: 2

The matched character is removed from the data stream:

Page 68 International Publishing Services PAD-CCP

8/1/96

" ...him. \c s Jesus..." ‘chpt’: 2

Output is restored to the data stream by endstore , and out(chpt)

copies the contents of ‘chpt’ to the output:

" ...him. \c 2s Jesus..." ‘chpt’: 2

Output is once again diverted to the storage area ‘chpt’ by
append(chpt) without erasing its contents. A ‘ : ’ is output to it,
then output is restored to the data stream by endstore :

" ...him. \c 2s Jesus..." ‘chpt’: 2:

The ‘match buffer’ containing ‘\’ is copied to output by dup :

" ...him. \c 2\s Jesus..." ‘chpt’: 2:

One character is removed from output and placed in input by
back(1) , and the active groups list is updated by use(1) :

" ...him. \c 2\s Jesus..." ‘chpt’: 2:

This results in the search pointer now being positioned before the
backslash in the data stream, ready to be compared to the search en-
tries in group(1) . The output text still contains the same sequence
"\c 2" that previously existed in the input, while the ‘chpt’ storage
area is now updated with the current chapter number, including a co-
lon, for use at later stages of the text analysis.

This level of detail may seem excessive but a good understanding of
the flow of text through the processing will be helpful in debugging
complex tables.

3. Summary of types of items in search and replace sides—Perhaps it’s time
now to list specifically all the types of things which can be searched
for and things which can be sent to the output file. We’ve already
discussed most of them.

a. What can be searched for?
1) any character or string of characters within delimiters, includ-

ing spaces and tabs,

2) nl , which will match on line endings,

3) characters in a storage area through the use of commands like

Mod 9 Going To And Fro Page 69

8/1/96

any , wd, fol , etc.

4) ASCII numbers. Any character, which cannot be represented

by a ‘key top’ character on the keyboard (such as non-printing

or upper ASCII codes) can be represented by its ASCII code.

Any number outside of delimiters will be assumed to be an

ASCII code. If a ‘d’ immediately precedes the number, the

number will be treated as a decimal ASCII number. With no let-

ter preceding the number, it will be assumed to be octal.

EXAMPLE

" " > d9 c replace 3 spaces with tab

10 > "" c remove backspace

b. What can be sent to the output file?
1) character strings within delimiters

2) nl , i.e., a <CR/LF> character

3) ASCII numbers (outside of delimiters)

4) contents of storage areas by using commands out and outs

5) All unmatched characters not specifically omitted

VOCABULARY and CONCEPTS

ASCII numbers—(American Standard Code for Information Inter-
change) A numbering system used by computers. A number is as-
signed to each character or control function. For the octal,
decimal, or hexadecimal representation of these numbers and the
assigned characters see the chart at the end of the CC User’s Guide.

PRACTICE ACTIVITIES and QUESTIONS

1. After matching on a backslash, we want to make it available
again for another match. Will the following entry do this? Why
or why not?

"\" > back(1) use(2)

2. Write in the correct entry to send the SFM and three-character
book name directly to the output unchanged, after matching on
"\id " .

Page 70 International Publishing Services PAD-CCP

8/1/96

3. Beginning with the following data buffer and search pointer posi-
tion, perform the match described in the table entry, then write
the resulting data buffer and search pointer position:

DATA BUFFER

\s ??Be’taj okme’dik ya’e? \r [Lc. 12.2-9]

TABLE ENTRY

"[" > "(" back(1) use(40)

RESULTING DATA BUFFER

__

READING ASSIGNMENT

CC User’s Guide: 8 ASCII codes, 12 back, 17 fwd, 36-38 back

EXERCISES

1. a. Write a “cleanup” table that will accomplish the following:
– change multiple spaces into single spaces;
– change multiple new lines into single new lines;
– remove spaces from the beginnings of lines and from the ends

of lines;
– remove spaces before backslashes;
– ensure that a new line precedes every backslash.

__

__

__

__

__

__

__

b. Key in your table and run CC using SLOPPY.SFM as input.

Check the results.

c. Print the table and hand it in after completing the following

Exercise 2 and 3.

2. From memory list at least 3 of the 4 types of items which can be
searched for and 4 of the 5 types of items which can be sent to
output. After writing your answers on the following lines, trans-
fer your answers to the bottom or back of the Exercise 1 printout.

Mod 9 Going To And Fro Page 71

8/1/96

a. Types of items which can be searched for:

b. Types of items which can be sent to output:

3. List CSTCHK.CCT ; make a note of the use of store(1) and
store(2) in the beginning comments; search for define(2) . Be-
low your Exercise 2 answer on the printout, write out what the re-
placement action of define(2) is doing. (You are not expected
to understand the meaning of define or of the storage contents,
only describe what is being sent to output.)

Page 72 International Publishing Services PAD-CCP

8/1/96

Mod 9 Going To And Fro Page 73

8/1/96

Mod 10 Introduction to Switches

COMMANDS/TOPICS COVERED

switches if endif
set else visual alignment

OBJECTIVES

At the end of this module, the student will be able to:

• demonstrate an understanding of the concept of switches by identify-
ing and providing some common decisions which fit the concept of
switches;

• modifying and/or writing change tables correctly using set , if ,
else , and endif ;

• visually align the components of a change table to aid human read-
ability.

INSTRUCTION

1. The concept of switches— One of the strengths of Consistent Changes
is its ability to make changes based on the context of the match. This
can be accomplished in several different ways. One way is to set a
switch when a certain condition is encountered, and then to test
whether that switch is on or not at the decision point where the
change is to be made.

Perhaps the most familiar switch to compare the concept to would
be an electric light switch in a room. The logic might include: when
someone enters the room, the light is turned on; later, when someone
else comes along, he can decide whether to go into the room to see
the first person by whether the light is on or not.

Now let’s put this example in the structure more like we would deal
with in CC. We find an input match (person A) so we turn the switch
on. Later we have another input match (person B). The replacement
action is contingent upon whether person A preceded, so we test the
switch. If the switch is on, person B will go into the room. But if it is
not on, person B will go elsewhere.

The rest of this module and the next will provide you with the com-
mands and syntax for using switches.

2. Turning switches on with set(name) — Like most light switches, CC

switches have two states: on and off. A switch is turned ‘on’ with

Page 74 International Publishing Services PAD-CCP

8/1/96

the set command, immediately followed by the name of the switch
in parentheses. (The same rules apply to switch names as apply to
groups and stores.) Because a switch will be turned on as a result of
an input match, we know that the set command will be used only
on the replacement side.

EXAMPLE

group(1)
"\c" > set(chpt) use(2)
...

Here a match on ‘\c’ will turn on a switch named ‘chpt’ for later
testing.

3. Testing a switch with if(name) — In our original example we might
have stated this step as: if the light is on, go into the room. In other
words, the action of going into the room will be taken only if the
light is on.

Let’s pursue our CC example that was presented above:

EXAMPLE

group(1)
"\c" > set(chpt) use(2)
"\s" > if(chpt) "@sect fol chpt = "
...

When ‘\s’ is encountered in the input, we want to know if the section
head is immediately following a chapter number. If it is, we will out-
put a Ventura tag that has appropriate spacing for a section head fol-
lowing a chapter number.

4. Stating the alternate action with else — What happens if the switch is
not on? Sometimes nothing—the action that would be taken if the
switch were on fails to occur, and that is all that is required. But
other situations call for one consequence if the switch is on and an-
other consequence if the switch is off. ‘If the light is on, go into the
room; otherwise, go watch TV’. For our CC example:

EXAMPLE

group(1)
"\c" > set(chpt) use(2)
"\s" > if(chpt) "@sect fol chpt = "

else
 "@sect hd = "

One Ventura tag (@sect fol chpt =) is output if the switch is on,
but a different tag (@sect hd =) is output if the switch is not on.

5. Ending the conditional action with endif — Most if statements will re-
quire an endif . This is necessary for the program to know how

Mod 10 Introduction to Switches Page 75

8/1/96

many actions to skip if the switch did not have the right setting for
those actions to be executed.

EXAMPLE

group(1)
"\c" > set(chpt) use(2)
"\s" > if(chpt) "@sect fol chpt ="

 set(\c\s)
else

 "@sect hd = "
 endif
 set(sect)
 use(3)

...

Now, if ‘chpt’ switch is on, a tag name is written to output and an-
other switch is set—indicating that a chapter number followed by a
section head has been encountered. The else establishes a boundary
on the actions to be taken if ‘chpt’ switch is on. If ‘chpt’ switch is
off, a different tag is written out, and the boundary of the ‘off’ conse-
quences is established by endif .

What about the two actions following the endif ? They are uncondi-
tional actions to be taken regardless of ‘chpt’ switch settings. With-
out the endif , these actions would be indistinguishable from the
‘off’ actions.

Unconditional actions (actions to be taken regardless of switch con-
ditions) can be placed either before the if command or after the
endif . Sometimes it may be necessary to perform an unconditional
action before the if ; other times an action may be required after the
endif . Study the following example:

EXAMPLE

group(1)
"\c" > set(chpt) use(2)
"\s" > store(sect)

 if(chpt) "@sect fol chpt ="
set(\c\s)

 else
"@sect hd = "

 endif
 endstore
 set(sect)
 use(3)

...

Note that the endstore command would produce different results
had it preceded the endif command.

Page 76 International Publishing Services PAD-CCP

8/1/96

Let’s look at one final example where an else is not needed:

EXAMPLE

...
endfile > if(paren)

 ’***FINAL PAREN UNMATCHED IN’
 out(book) nl

 endif
 endfile

Here the end of the input file has been encountered and a closing pa-
renthesis was never found to match the last opening parenthesis. An
error message is generated. The endif forms the limit of actions to
be taken if the ‘paren’ switch is on even though there is no else .
The endif is needed so that endfile will be output whether the
‘paren’ switch is on or off.

6. Testing for multiple conditions— Frequently it is necessary to test two
or more switches to determine if an action needs to be done. Multi-
ple if commands together can be used to accomplish this.

EXAMPLE

"\s" > if(chpt) if(intro) "@sect int = "
 endif
 set(sect)
 use(3)

In this example, the Ventura tag "@sect int = " will be output
only if both switches ‘chpt’ and ‘intro’ are on. Also, the endif com-
mand ends all if conditions currently in effect so that set(sect)

use(3) will be performed unconditionally.

7. Alignment hints for readability— There are certain alignment ‘conven-
tions’ which will greatly enhance readability when followed:

EXAMPLE

group(1)
"search string" > actions c comments

 if(name) c comments
 actions (incl. strings) c comments

else
 actions (incl. strings) c comments

endif
other actions (incl. strings) c comments

"search string" > actions c comments

group(2)
any(name) "txt" > actions c comments

A scheme such as this will greatly assist you or someone else in fol-
lowing the flow of logic through a table.

Mod 10 Introduction to Switches Page 77

8/1/96

PRACTICE ACTIVITIES and QUESTIONS

1. Which of the following decisions fit the concept of switches?
__ a. If the manuscript is complete, we will publish it.

__ b. If the text contains Standard Format Markers, we’ll use CC.

__ c. Because the printer is broken, we can’t complete the job.

__ d. We will recover the file, if we have the backup disk.

__ e. On Monday afternoon, we will have a meeting.

2. Some translators will code into their text a second (or third) ‘\s’
to force a line break in a long section head. Write the table entry
to replace all but the first ‘\s’ in a section head with a Ventura
line break <R>. (Assume that the switch is cleared elsewhere in
the table.)

3. Rewrite the following entry for better visual alignment.

"\c " > if(\c) endstore "duplicate \c found at "
 out(bk,chpt) use(4) else set(\c) store(\c) dup
 back(3) use(7) endif incl(10)

READING ASSIGNMENT

CC User’s Guide: 15 else, 16 endif, 18 if, 24 set, 40-44 switches

Page 78 International Publishing Services PAD-CCP

8/1/96

EXERCISES

1. In Mod 9, Exercise 1, you wrote a table to ensure that each ‘\’
started on a new line. Most likely it resulted in an extra new line
before the first ‘\’ in the file. Rewrite your table using a switch to
determine if the backslash ought to have a new line before it or
not.

__

__

__

__

__

__

__

__

__

Run CC using SLOPPY.SFM; check your results; print and hand in

your table, after completing Exercise 2.

2. On your Exercise 1 printout, write a single entry that, upon
matching ’\’ , will do all of the following:
a. put it to output and back up over it;

b. activate group(2) if switch ‘\c’ is on;

c. activate group(3) if switch ‘\s’ is on;

d. activate group(4) if switch ‘\r’ is on;

e. activate group(5) if switch ‘\p’ is on.

Mod 10 Introduction to Switches Page 79

8/1/96

Mod 11 More On Switches

COMMANDS/TOPICS COVERED

clear ??? search technique
ifn mark & rewind technique

OBJECTIVES

At the end of this module, the student will be able to:

• modify and/or write tables correctly using clear and ifn ;
• modify a table using ??? search technique;
• modify a table using mark and rewind technique.

INSTRUCTION

1. Turning the switch off with clear(name) — Returning to the example
first used at the beginning of Mod 10 (the light switch), this will
only work if person A remembers to turn the light off when he
leaves the room. (I seem to recall my mother harping on that!) In CC,
a switch is turned off by the clear(name) command.

EXAMPLE

"(" > set(paren) dup
")" > if(paren)

dup clear(paren)
 else

"UNMATCHED)"
 endif

endfile > if(paren)
"UNMATCHED ("

 endif
 endfile

In this example, a switch is set when an open parenthesis is found.
When a closing parenthesis is encountered, the switch is turned off if
it is on. If it is not on, an error message is put to output. If the switch
is not turned off after a close parenthesis is processed, then sub-
sequent close parentheses would not generate error messages.

2. Testing for an off condition with ifn(name) — If consequences were
only to be performed if the switch was off, it would be possible to
write the entry:

Page 80 International Publishing Services PAD-CCP

8/1/96

EXAMPLE

"string" > if(name) c (do nothing)
 else

 "consequence"
 endif

However, we have been provided a more straight forward way of do-
ing this with the ifn(name) command. The literal reading of this is:
if switch(name) is NOT on, then do consequences. Here’s a CC syn-
tax example:

EXAMPLE

")" > ifn(paren) "EXTRA) FOUND AT"
 out(book,chpt,verse) nl

 endif

This ifn command can also be used with else and alternate conse-
quences. However, there would be little reason not to use if rather
than ifn when there are consequences for both states. Combining if

and ifn conditions is acceptable. For example, if(\s) ifn(\r)

would require ‘\s’ to be on and ‘\r’ to be off for the consequences to
be performed.

3. Additional tips and techniques involving switches.
a. Setting/clearing a switch twice—There is no harm in setting (turn-

ing on) a switch that is already on, or clearing (turning off) a
switch that is already off. This is sometimes deliberately done to
ensure that a switch currently has the correct setting.

b. ??? Search Technique—We have a number of established CC ta-
bles which are used in the preprocessing stage of preparing a
manuscript for publishing. Several of them offer one or more op-
tions that can be selected (See Figure 11.). An option is usually
selected by setting a switch. The table is constructed with the set

switch command already in the begin entry. This set command
can be deactivated or reactivated by inserting or removing a c

from the beginning of the line. (The c makes the line a comment
so it is not performed.)

In order to make the table more easily modifiable, the option
switches (the set commands activating the options) are usually
marked with ??? (triple question marks) in the comments at or
preceding each such set command. In this way, the user can
‘search’ the table for ??? using his word processor and easily find
the options and their set commands. (This ??? is also used to
mark any parts of the table which may need job specific modifica-
tion such as stores, etc.)

Mod 11 More On Switches Page 81

8/1/96

c Mod 53 14-DEC-90 LIB:FLAGEM.CCT

c WARNING: ERRONEOUS CHARACTERS that occur in id lines,
c book titles, picture captions, & footnotes will not be
c found by this table. Only those found in para-
c graphs, poetry, or section heads will be found!

c Search for "???" to locate modifyable sections of table.
c ccc
begin > clear(ENG,PORT,SPAN)
c ccc
c ??? SELECT THE PREDOMINANT QUOTE SYSTEM USED:
c ENGLISH - the default:

set(ENG)
c PORTUGUESE:
c set(PORT)
c SPANISH:
c set(SPAN)
c ccc
c ??? IF THE PREDOMINANT QUOTE SYSTEM IS NOT ENGLISH
c (QUOTE MARKS "<<" ARE NOT USED)
c OR
c IF "<<" IS NOT REQUIRED WHEN A CITATION CONTINUES
c AFTER A NEW PARAGRAPH, CHANGE THE FOLLOWING STATEMENT:
c ENGLISH style - the default:

set(<<PAR)
c not ENGLISH style:
c clear(<<PAR)
c ccc
c ??? SELECT THE QUESTION-EXCLAMATION MARK SYSTEM USED:
c ENGLISH - the default:
 clear(SP??)
c SPANISH:
c set(SP??)
c ccc
c ??? SELECT THE CROSS REFERENCE STYLE OF THIS DOCUMENT:
c CROSS REFS IN PARENS - the default

set(Refinpar)
c CROSS REFS WITHOUT PARENS
c clear(Refinpar)
c ccc
c ??? TO ALTER THE BOOK AND CHAPTER DISPLAY:
c DISPLAY ALLOWED - the default

set(disp)
c DISPLAY INHIBITED
c clear(disp)

c ccc
c ??? TO IGNORE FOOTNOTE MARKER REPORTING:
c REPORT ON FOOTNOTE MARKERS - the default

clear(ignfm)
c IGNORE FOOTNOTE MARKERS:
c set(ignfm)

Fig. 11. FLAGEM.CCT

Page 82 International Publishing Services PAD-CCP

8/1/96

c. Mark and Rewind—Sometimes it is necessary to make changes
that depend on what follows a match. Mark and Rewind is a tech-
nique to get CC to look ahead in a file, see what is there, and re-
turn to the original match to make the proper change.

Let’s say we want to put out one of two Ventura tags for a sec-
tion head (\s) depending on whether the text element following it
is a chapter (\c) or not. Figure 12. shows a technique for doing
this. In this example, the text elements in question closely follow
each other, so a store could have been used. But sometimes a
great distance must be covered in the text file to find the needed
information before making the current decision. This technique is
most helpful then.

When a section head is encountered, "<MARK>" is inserted into
the output file. This is to mark our current place in the input file.
(We could have inserted "XXX" or any other text that we were cer-
tain did not otherwise exist in the input file.)

Then we look ahead, doing no other processing but looking for
the next text element. All of the input text is passed unchanged to

C EXLSN5B.CCT -- example of a table that looks ahead of a
C match to see what follows, and makes a different
C replacement depending on text that follows the match.

group(sfm) C finds sfm’s
’\v ’ > ’@verse = ’ C outputs verse paragraph tag
’\s ’ > ’<MARK>’ C found sect hd, outputs a mark

 use(look_ahead) C look ahead to next sfm
’\c ’ > ’@chapter = ’ C output chpt paragraph tag

group(look_ahead) C looks ahead to next sfm
’\c ’ > dup C found chapter sfm, dup

 set(chapter) C set chapter switch
 use(rewind) C go back to mark

’\’ > dup C found sfm other than chpt
 clear(chapter) C clear chapter switch
 use(rewind) C go back to mark

group(rewind) C find mark, output proper para tag
’<MARK>’ > if(chapter) C found mark, if chpt sw set,

 ’@Chap. Section = ’ C output chpt sect tag
 else C else, chpt switch not set
 ’@Reg. Section = ’ C output reg sect tag
 endif
 use(sfm) C return to sfm search

’’ > back(1) C backup till <MARK> found.
C (max of 200)

Fig. 12. Mark and Rewind Technique

Mod 11 More On Switches Page 83

8/1/96

the output file until the next element is encountered. If it is a ref-
erence (\c), a switch is set. If it is any other element (\), the
switch is not set.

Now we begin the ‘rewind’ process, backing up one character at
a time—taking it out of the output and putting it back into the in-
put. Each time we put a character back into the input we check
again to see if the next six characters in the input are "<MARK>".
Eventually, when we have backed up enough characters, we will
have backed up over our "<MARK>", putting it back into the input.
At this point we have a match and we know we are back where
we started from—only this time our switch will tell us whether
the following element is a chapter or not.

PRACTICE ACTIVITIES and QUESTIONS

1. List FLAGEM.CCT and search for the switch named ‘SecHd’. For
each occurrence, list below the search side of the entry and the
switch command used (set , clear , if , or ifn).

2. Starting at the beginning of FLAGEM.CCT, locate all ‘???’s.
How many are there? __________

How many are for setting or clearing switches? __________

Page 84 International Publishing Services PAD-CCP

8/1/96

List the names of the switches at these locations.

__

__

__

__

3. There are some very strange looking switch names in this table.
In the section of group(1) dealing with quote marks, there is a re-
placement action containing:

ifn(<<-<-<<,<<-<,<<,<) ...

a. how many switches are named? __________

b. what does it mean, in terms of switches being on or off?

__

__

READING ASSIGNMENT

CC User’s Guide: 14 clear, 19 ifn

EXERCISES

1. Copy FIXEM.CCT to a file named MYFIXEM.CCT. Search for ‘???’
and make any alterations necessary to:
a. allow display;

b. alter line length to ‘70’ characters;

c. strip footnotes;

d. not insert footnote markers;

e. strip illustrations;

f. allow only ‘,’ and ‘–’ with verse numbers;

g. allow ‘\eq’ to be a legitimate SFM, in group(2) ;

h. in group(10) , enable the changes ‘-u’ to ‘_u’; ‘-U’ to ‘_U’;

‘ " ’ to ‘/’; and ‘:: ’ to ‘ : ’; and add the change ‘=’ to ‘-’;

i. in the two entries with the XXX for the backup and rewind,

change the "XXX" to "&&&" .

Run CC in display mode using SOMT.SFM as input and observe

the changes, especially from the insertion of the "&&&"

through its removal. Print your output file and hand in.

Mod 11 More On Switches Page 85

8/1/96

Mod 12 ‘If ’ Commands Using Stores

COMMANDS/TOPICS COVERED

ifeq ifneq cont
set(dummy) ifgt incr

OBJECTIVES

At the end of this module, the student will be able to:

• modify and/or write tables correctly using cont , ifeq , ifgt , ifneq ,
and incr ;

• demonstrate an understanding of counter initializing by writing the
output for specific input text and table entries using counters.

INSTRUCTION

1. Comparing storage areas to strings using ifeq(name) — A replacement
action can be dependent on the contents of a storage area. In this
command, if the character string stored in a storage area ‘name’
equals another designated string, then the consequences are per-
formed.

EXAMPLE

"\s" > ifeq(lastSFM) "\s" out(book,chpt)
 "Successive Sect.Hds Found"

 endif

The replacement side would read: if the string stored in the storage
area named ‘lastSFM’ equals ‘\s’, then send the contents of the stor-
age areas named ‘book’ and ‘chpt’ to the output, followed by the
string ‘Successive Sect.Hds Found’.

The ifeq command is a type of ‘if’ command that requires a stor-
age area name and a character string, and is similar to if in that it
may also use else , alternate consequences, and endif .

The character string which the storage area is compared to may in-
clude a character string within delimiters (as shown in the above ex-
ample), nl , and ASCII numbers. The string is terminated by the next
command (except for nl or c). In the above example, the string is
terminated by the out command.

But what if we wanted to put out the message within the delimiters
first and then the book and chapter from the storage areas?

Page 86 International Publishing Services PAD-CCP

8/1/96

BAD EXAMPLE

"\s" > ifeq(lastSFM) "\s" "Successive Sect.Hds Found at"
 out(book,chpt)

 endif

In this example the CC program would have considered the entire
string "\sSuccessive Sect.Hds Found at" to be the string that
storage area ‘lastSFM’ must be compared to—with the consequences
being only out(book,chpt) ! How could we avoid this? There must
be an intervening command between the two strings. One possibility
is to set a ‘dummy’ switch which serves no purpose except to exist
there as a command, thereby signaling the end of the string for the
compare:

 EXAMPLE

"\s" > ifeq(lastSFM) "\s" set(dummy)
"Successive Sect.Hds Found at"
out(book,chpt)

Now, the set(dummy) command will terminate the string that
‘lastSFM’ must equal, and the string ‘Successive Sect.Hds . . .’ is rec-
ognized as a consequence.

2. If not equal command ifneq(name) — This command works exactly
the same as the ifeq command except that it means “ if the character
string stored in the storage area ‘name’ is NOT equal to . . .”

3. If greater than command ifgt(name) — This related command is
most commonly used to compare numeric strings with each other. It
means “ if the number in storage area ‘name’ is.greater than the
number designated in the numeric string following it, then perform
the consequences” .

NOTE: There is NO iflt or ‘if less than’ command!

We will cover two more commands before looking at some more
examples.

4. The contents command cont(name) — This means “ the contents of
the named storage area”—that’s all! It can be used in conjunction
with one of the above ‘if ’ commands—replacing the string to be
compared with:

IFLT

Mod 12 ‘If ’ Commands Using Stores Page 87

8/1/96

EXAMPLE

"\s" > store(newSFM) dup endstore
 ifeq(lastSFM) cont(newSFM)

"Successive \s found at"
out(book,chpt)

Note that since cont is used instead of a string, the dummy switch is
not needed. There is no string to terminate.

The command cont may be used in other types of entries as well—
nearly any place a string could be used. It can even be used as a
search argument:

EXAMPLE

cont(lastSFM) > ifn(verse) "Successive" out(lastSFM)
 "Found at" out(book,chpt)

 endif

5. Incrementing a storage area using incr(name) — The command incr

will cause the value stored in the named storage area to increase by
one. This is a useful command for counting the number of times an
item is found, or for counting the times an event occurs (such as how
often a replacement action has been performed).

EXAMPLE 1

begin > store(\s) "0" endstore
"\s" > incr(\s)
endfile > out(\s) " section heads were found"

 endfile

EXAMPLE 2

"\" > "Unidentified SFM found at"
 out(book,chpt)
 incr(errcount)
 ifgt(errcount) "5" set(dummy)

 "Text not ready for processing" nl
 "At least " out(errcount) " errors found."
 endfile

 endif

In these examples, incr is used to increment storage areas which are
being used as counters. In the event a storage area is not initialized
(i.e., created using store and the string ‘0’ placed in it) and it is in-
cremented for the first time using incr , then the program will first
create such a storage area, pretend it contains a ‘0’, then increment it
to ‘1’.

Notice what would happen in Example 1 if the storage area ‘\s’ were
not initialized to zero (or not created) and if no section heads (\s)
were encountered. The out(\s) command would then output a stor-
age area without anything in it; ‘nothing’—a null rather than a

Page 88 International Publishing Services PAD-CCP

8/1/96

zero—would have been sent to the output at the end of file. The
message will then read ‘ section heads were found’ rather than
‘0 section heads were found’!

If it will minimize confusion and aid readability and understand-
ability, the storage areas should be initialized in the begin state-
ment. This can be used as documentation of all the stores which are
used in the table and, with comments, can explain the use of each.

Several examples are included below which use the commands dis-
cussed in this module. They are portions or complete tables which
are used in the preprocessing stage of manuscript publishing. The
Practice Activities and Questions which follow the examples will
make use of them.

EXAMPLES

c VPNAM.CCT Mod 89 31-JAN-91
c from VPNAM.CCT Mod 87 15-JAN-91
c modified for PAD-CCP, May 1991, by K. Seitz
c A table to convert SFMs to VP tags for Scripture

c XX

...

 c Outputs an incremented letter for the footnote marker.

group(105)
any(Num) > dup
’a*’ > endstore c "a*" indicated multiple

 ifeq(mkrlet) 172
c If the last letter was z,

 store(mkrlet) 141 endstore
c start over again with a.

 else incr(mkrlet)
 endif
 out(mkrlet) back(1) use(106)

’*’ > endstore
 ifeq(mkrlet) 172

c If the last letter was z,
 store(mkrlet) 141 endstore

c start over again with a.
 else incr(mkrlet)
 endif
 out(mkrlet) back(1) use(106)

any(Div) ’*’ > endstore c The letter is not
 out(mkrlet) back(1) use(106)

c other than the 1st one
c for this footnote.

Fig. 13. from VPNAM.CCT

Mod 12 ‘If ’ Commands Using Stores Page 89

8/1/96

C ***

C LONGWD.CCT modified for PAD-CCP, May 1991, by K. Seitz
C -- a table to make a list of all words of certain length
C or longer.
C For use in setting up a hyphenation table.

C ***

begin > store(1) " " nl ",.:;><!\|()$#/’0123456789"
 endstore
 store(2) ’6’ endstore
 store(3) ’0’ endstore
 store(5) ’abcdefghijklmnopqrstuvwxyz’
 ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’ endstore

group(1)
any(5) > store(4) dup incr(3) use(10)
any(1) > ’’
’’ > ’’ fwd(1)
endfile > endfile

group(10)
’’ > dup fwd(1) incr(3)

 ifeq(3) cont(2) use(20) endif
any(1) > store(3) ’0’ endstore use(1)

group(20)
’’ > dup fwd(1)
any(1) > endstore out(4) nl

 store(3) ’0’ endstore use(1)

Fig. 14. LONGWD.CCT

c FIXEM.CCT Mod 24 16-JAN-91

...

c cc
c ???LIST job specific orthographic corrections!
c These are shown as examples only.

group(10)
c ’c’ > ’/o’ incr(char,char) c au
c ’C’ > ’/O’ incr(char,char) c AU
c ’j’ > ’/e’ incr(char,char) c epsilon
c ’J’ > ’/E’ incr(char,char) c EPSILON
c ’q’ > ’/n’ incr(char,char) c eng
c ’Q’ > ’/N’ incr(char,char) c ENG
c ’-u’ > ’_u’ incr(char,char) c barred u
c ’-U’ > ’_U’ incr(char,char) c BARRED U
c ’"’ > "/" incr(char) c Glottal

c ’[’ > ’((’ incr(char,char) c Open bracket
c ’]’ > ’))’ incr(char,char) c Closing bracket
c ’"’ > "‘" incr(char) c Grave accent
c ’::’ > ’:’ incr(char) c colon

Fig. 15. from FIXEM.CCT

Page 90 International Publishing Services PAD-CCP

8/1/96

c CSTCHK.CCT CHARACTER SPECIFICATION TABLE CHECKER
c 28-NOV-88 KH

c CSTCHK.CCT - a validity check for Character Specifica-
c tion Tables that will find certain errors that cannot
c be found by the CST compiler

...

group(25) c store octal access code
 ’/’ any(10) > ’/’ endstore set(2) use(45)

c composite character follows
 any(15) > dup incr(3) c valid octal character
 any(10) > endstore c white space ends access code
 ifeq(3) ’4’

ifgt(1) ’0377’ c compare 4-digit num.
set(18)

endif c invalid access code
ifeq(3) ’3’

ifgt(1) ’377’ c compare 3-digit number
set(18)

endif c invalid access code
use(45)

 ’/*’ > set(15) ’ /*’ back(3)
 c white space required before comment

 endfile > do(3) set(14) use(99) c no SILID found
 ’’ > set(18) use(20) c invalid access code

group(30) c store decimal access code
 (decimal point is valid)

 ’./’ any(10) > ’/’ endstore c composite char. follows
 set(2) use(45)

 ’/’ any(10) > ’/’ endstore c composite char. follows
 set(2) use(45)

 any(16) > dup incr(3) c valid decimal character
 ’.’ any(10) > endstore use(45)

c decimal & white space ends access
 any(10) > endstore c white space ends access code

 ifeq(3) ’4’
 ifgt(1) ’0256’ c compare 4-digit number

 set(18) c invalid access code
 endif
 ifeq(3) ’3’
 ifgt(1) ’256’ c compare 3-digit number

set(18) c invalid access code
 endif
 use(45)

 ’/*’ > set(15) ’ /*’ back(3)
 c white space required before comment

 endfile > do(3) set(14) use(99) c no SILID found
 ’’ > set(18) use(20) c invalid access code

Fig. 16. from CSTCHK.CCT

Mod 12 ‘If ’ Commands Using Stores Page 91

8/1/96

PRACTICE ACTIVITIES and QUESTIONS

1. Explain what is happening in the ifeq through endif commands
in Fig. 13 (VPNAM.CCT, group(105)).

2. In Fig. 14 (LONGWD.CCT), incr(3) means to add 3 to the
counter.

 True False

c WRDLST.CCT Mod 2
c This is a table to remove all data from word list files
c produced by TAD so each word is listed only once and
c placed on a new line without its count or references.
c storage (let) must contain all characters found in words
c in word list

begin >
 store(lastwd) ’’ c Stores previous word

store(thiswd) ’’ c Stores current word
store(num) ’1234567890’ c numbers for count
store(let) "abcdefghijklmnopqrstuvwxyz’"

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
endstore use(1)

...

c cc
c AFTER the entire word has been stored,
c compare it with the previous word.

group(5)
 10 > ’’ c Strip backspace commands
 any(let) > dup
 ’ ’ > endstore

ifeq(lastwd) cont(thiswd)c This word is the
 use(6) c same as the
endif c previous word.
ifneq(lastwd) cont(thiswd) c This word is not
out(thiswd) store(lastwd) c the same, output
outs(thiswd) endstore c it to the file
 use(6) endif c and to the

 c previous word
 c storage area.

Fig. 17. from WRDLST.CCT

Page 92 International Publishing Services PAD-CCP

8/1/96

3. Write out the meaning of the ifeq through endif commands in
Fig. 14.

__

__

__

4. In Fig. 15 (FIXEM.CCT, group(10)), why is the counter name re-
peated in the incr command in several entries?

__

__

__

5. In Fig. 16 (CSTCHK.CCT, group(25) and (30)), write out the in-
terpretation of: ifgt(1) ’377’ set(18)

__

__

__

6. Study the ifeq and ifneq entries in Fig. 17 (WRDLST.CCT) and
rewrite that whole replacement entry to simplify it.

__

__

__

__

__

__

__

7. Would it be necessary to intialize the counters in the following
situations?

a. endfile > ifgt(errcnt) ’0’
out(errcnt) ’ errors found in file’

 else ’no errors in file’
 endif
 endfile

 Yes No

b. endfile > out(errcnt) ’ errors found in file’
 endfile

 Yes No

Mod 12 ‘If ’ Commands Using Stores Page 93

8/1/96

READING ASSIGNMENT

CC User’s Guide: 14 cont, 18 ifeq, 19 ifgt, 19 ifneq, 20 incr

EXERCISES

1. There seems to be a slight ambiguity between the comments at
the beginning of 7CHAR.CCT and the comments in group(2) where
the word length is tested. (See Fig. 7 in Mod 4.) By looking at the
actual commands, determine whether words exactly 7 characters in
length will be deleted or sent to output.

 7 character words will be deleted.

 7 character words will go to output.

2. Copy this file from your disk to a file named MYCHAR.CCT, and
modify it as follows:
a. In the begin entry, provide a store marked by ??? for the user

to indicate the maximum length of words to be deleted;

b. use this store in group(2) in testing the word lengths;

c. complete the cleanup by appropriately changing comments

and deleting the ??? in group(2) .

Run CC, using first the original table and then your modified ta-

ble. Use SOMT.WDL as input. Compare the results—they

should be the same. Print your table; write your answer to

Exercise 1 on the bottom; and hand it in.

Page 94 International Publishing Services PAD-CCP

8/1/96

Mod 12 ‘If ’ Commands Using Stores Page 95

8/1/96

Mod 13 ‘If ’ Commands—Advanced Techniques

COMMANDS/TOPICS COVERED

begin more mark and rewind
end nesting ‘ifs’

OBJECTIVES

At the end of this module, the student will be able to:

• demonstrate an understanding of nesting ‘if ’ commands by modify-
ing and/or writing tables using nested ‘ifs’, at least two deep, and
properly using begin and end .

INSTRUCTIONS

1. Variation on Mark and Rewind Technique— In Mod 11, a technique
called ‘mark and rewind’ was described. It enabled the program to
look ahead in order to base a current decision on future text. In an-
other variation of this, a current condition may require a change in
text already processed.

EXAMPLE (taken from FIXEM.CCT group(10), (50) and (51))

...
group(10) c OUTPUT and COUNT this character.

c If the current character would make the
c line too long, ’XXX’ is inserted to
c mark the place in the word.

 "" > fwd incr(char)
 ifgt(char) cont(maxchars) "XXX"

 back(4) use(50)
 endif

group(50) c BACKS UP to the previous space and
c ends the line.

 " " > nl store(char) "00" endstore
 use(51)
 "" > back(1)

group(51) c GOES forward to ’XXX’ to prevent
c rechanging characters

 "XXX" > "" use(1,10)
 "" > fwd incr(char)

In the above example, the length of the line is being limited to a
maximum number of characters. This number has been stored in
‘maxchars’ storage area. If a character being forwarded to output
causes the character count for that line to exceed the maximum char-

Page 96 International Publishing Services PAD-CCP

8/1/96

acter limit, then ‘XXX ’ is written to output to mark the current posi-
tion. Then the XXX and the last character of output are brought back
from the output and put in the input. A search is begun for the most
recent space in the output—backing up one character at a time.

When that space is found, the line is terminated (nl), the line charac-
ter counter is zeroed, and the search is begun for the forward point
of processing marked with XXX . Upon finding this mark, normal
processing is resumed.

This example and the one in Mod 11 show that similar techniques
can be used to either look ahead or behind of the current place and
then return.

2. Nesting ‘if ’ commands using begin and end— Sometimes the actions
to be taken depend on complex conditions. For example, if the light
is on in the room and if the time is between 7 p.m. and 10.p.m., then
someone is in there—go in and visit him. But if the light is on and it
is later than 10 p.m., someone forgot to turn the light out—so turn
off the light. If the light was not on, then no one is there, so go
watch TV. We might view this as follows:

if(light)
ifgt(time) "1859"

ifgt(time) "2200" clear(light)
else do(visit)
endif

endif
else
use(TV)

Confusing, isn’t it?! Nesting ‘if’ commands can be complex and dif-
ficult to follow. Some may have else and alternate consequences as-
sociated; others may not. By paying attention to alignment, we can
make the table a bit more readable for us humans, but unfortunately
the program does not read alignment. In the pseudo example above,
something more is needed to make the program properly do what we
intended to say, not what in reality we said.

Begin and end—You are now familiar with using begin as the first
entry on the search side. But it is also used on the replacement side
to mark the beginning of a set of actions which are terminated with
end . These commands (begin and end) are necessary when nesting
‘if ’ commands. Our pseudo example might now be written:

Mod 13 ‘If ’ Commands—Advanced Techniques Page 97

8/1/96

if(light)
 begin
 ifgt(time) "1859"
 begin
 ifgt(time) "2200"
 clear(light)
 else
 do(visit)
 endif
 end
 endif
 end
else
 use(TV)
endif

This may look more confusing than it is. Here’s the rule for each
level of ‘if ’:

if condition
 begin
 actions (including paired if/endif commands)
 end

 else
 begin
 actions (including paired if/endif commands)
 end

endif

When the ‘actions’ contain additional ‘ifs’ the same rule applies.
When alternative consequences do not apply to the ‘if’ condition,
the else and its associated begin ...end may be omitted.

There is a simple test you can perform to determine if your table is
nested properly. Draw a line from the ‘i’ of every if command to
the ‘e’ of each respective endif , then likewise from the ‘b’ of every
begin to the ‘e’ of each respective end . When an if/endif pair
contains an else , draw the line so that it touches the ‘e’ of else .
Lines should be straight, and must be drawn to the left of all other
commands. If your lines can be drawn without crossing each other,
and the if/endif lines are always separated by at least one be-

gin/end line, then the change table is nested properly.

There are endless variations of nesting. Figures 18, 19, and 20 show
a number of examples.

VOCABULARY and CONCEPTS

nesting—this is a computer programming term. When referring to
‘if ’ commands, it means an ‘if’ command contained within the re-
placement actions of another ‘if ’ command.

Page 98 International Publishing Services PAD-CCP

8/1/96

 c COMPLETION OF VERSE NUMBERS OTHER THAN VERSE 1
group(3)
 "-" > append(VsNum) outs(NBHy) c hyph in bridge
 any(Num) > dup c numbers
 any(sp) > ’’ endstore do(2) do(3) c space or new line
 if(VInPro) c mid-para vs num
 begin
 if(VsSty) begin c in verse style
 do(10) ’@VRS PAR = ’
 end
 endif
 if(ParSty) begin c in par style
 if([) c no sp tween
 begin c [& num
 ’’
 end
 else
 begin
 ’ ’ c space
 end
 endif
 end
 endif
 end
 endif
 use(1,10)

Fig. 18. from VPNAM.CCT group(3)

 c Completes the reference marker at the beginning of
 c a footnote. May convert the sequential number to
 c a sequential letter (a thru z, lower case only).
group(107)
 any(Num) > dup
 any(sp) > ’’ endstore
 if(FMkrL) begin c Marker is a ltr,
 ifeq(fnlet) 172 c Reset to a
 store(fnlet) 141 c if z was the
 endstore c last letter.
 else c Else,
 incr(fnlet) c change to
 endif c next letter.
 out(fnlet) c Ltr, .5 thin sp
 end
 endif
 if(FMkrN) c Marker is a number
 out(tempn) c Output the number
 endif
 if(FMkrS) begin c Same mrkr in text.
 if(FMkr) out(FMkr) c Mrkr wanted.
 else c No marker wanted.
 endif
 end
 endif
 store(tempr) use(108)

Fig. 19. from VPNAM.CCT group(107)

Mod 13 ‘If ’ Commands—Advanced Techniques Page 99

8/1/96

PRACTICE ACTIVITIES and QUESTIONS

1. Take time to study Figures 18, 19, and 20. Identify the com-
mands being used; whether they deal with switches, stores,
groups, or other; and how the logic flows.

2. Look at the use of begin and end in Figures 18, 19, and 20.
Show that these tables are properly nested by drawing lines con-
necting all begin and end commands and also if , else , and
endif commands. Notice that successive ‘if ’ commands do not
require begin/end when the ‘if ’ is completed (with endif) be-
fore the next ‘if ’ begins. But ‘ifs’ which are nested (one not com-
pleted before the next begins) do require a begin and end for
each ‘if ’. Fig. 19 contains both successive and nested ‘ifs’. Can
you identify each?

READING ASSIGNMENT

CC User’s Guide: 12 begin, 16 end

EXERCISES

1. List WDLENG.CCT , paying special attention to the store

commands in the begin entry and the replacement side for
any(sp) in group(2) .
– Make a copy of this file called MYWDLENG.CCT.

nl "\v" > ifn(\p\q\m)
 begin
 if(\s) begin c see note*

 nl "\m "
 clear(\e)
 end c see note*

 else
 begin
 if(\c) begin c see note*

 nl "\m "
 end c see note*

 endif
 end
 endif
 end
endif

* the table will execute correctly without these two begin/end sets since the actions

do not contain if commands. All other begin/end sets are essential.

Fig. 20. from STDFIX.CCT group(10)

Page 100 International Publishing Services PAD-CCP

8/1/96

– Modify it so that after the letters of each word are counted, the
word lengths are tabulated by ranges as follows:
 1–6 characters
 7–15 characters
 16–24 characters
 over 24 characters
(Use the ifgt command for this exercise. Do not test for each
word length individually.)

– The statistics are put out at the end of file in define(5) . You
need not understand defines, only that they are a list of replace-
ment actions. Modify these appropriately.

– Run CC, using first the original table and then your modified
table. Use SOMT.WDL as input. You should be able to reconcile
the two sets of statistics.

– Print your table and hand it in.

2. You are processing a Scripture file containing clean text using
only five SFMs. Write a table to convert the SFMs to the appropri-
ate Ventura tag name according to the chart below. Assume that
each SFM starts on a new line and that a single space follows it.

 SFM Tag Name Condition

 \mt @TITLE M = always
 \c @CHP = always
 \s @SEC CH REF = when at a chapter break and followed by

a cross ref.
 @SEC CH = when at a chapter break, no cross ref.
 @SEC REF = when followed by cross ref,

but no chapter break
 @SEC = when no chapter break, no cross ref.

 \r @REF = always
 \p @PAR 1ST = when first paragraph after a chapter break

 @PAR = all other paragraphs

No matter which order the \c and \s are in, output them in the fol-
lowing order: \s, \r, \c, \p (for whichever elements are present).
This order will be needed for dropped chapter numbers. Use
MOD13.SFM on your disk for input. Print your table and hand it in.

Hint: Try setting a switch and storing chapter, section, and refer-
ence when they are encountered. When a \p is found, then test for
what preceding elements were found and stored, and put them out
in the proper order with appropriate tags. (Assume there will only
be one SFM of a kind prior to a \p.)

Mod 13 ‘If ’ Commands—Advanced Techniques Page 101

8/1/96

Mod 14 ‘Doing’ Defined Routines and Repeating

COMMANDS/TOPICS COVERED

define do repeat

OBJECTIVES

At the end of this module, the student will be able to:

• draw a block diagram of a table containing a define/do operation;
• modify and/or write tables properly using define , do, and repeat .

INSTRUCTION

1. A shortcut for repetitive actions using do(name) and define(name) —
When the same set of replacement actions must be performed at mul-
tiple locations within a change table, the table can become cumber-
some and unnecessarily long. (See Fig. 21.)

The same results can be accomplished by extracting these identical
routines and defining them with the define command. On the
search side the entry would be:

define(name) >

with name being whatever you choose to call it—following the same
rules that apply to groups, stores, and switches. The replacement
side would contain the set of actions to be performed.

In the replacement arguments from which these defined actions were
removed, insert:

> do(name)

naming the specific define containing the actions to be performed
at this point in the processing. (See Fig. 22.)

Other replacement actions can precede and/or follow the do com-
mand. After the defined routine is performed, the program will re-
turn to where the do command was located, and the table processing
will continue from there.

All of the define commands and their replacement actions should
be sequenced together in the table—either between the begin search
command and the first group , or after the last group . If the define

Page 102 International Publishing Services PAD-CCP

8/1/96

c EXTRAC.CCT Mod 2 13-JUN-89
c Use: for extracting selected SFM elements
c Based on FLAGEM.CCT
c Search for "???" to find sections of the change table
c that you must alter.
begin >

 store(sp) ’ ’ nl C SFM terminators
 store(BK) ’’ C for Book name storage
 store(CH) ’0’ C Chapter number storage
 store(VS) ’0’ C Verse number storage
 store(num) ’1234567890’ C Legit chapter num’s
 store(VsDiv) ’abc’ C verse divisions
 store(BkMsg) nl ’BOOK: ’ C book name message
 store(ChMsg) ’Chap: ’ C chapter message
 use(1)

c ccc
c Finds sfm initiators and strips all else.

group(1)
’\’ > use(2)
’’ > omit
endfile > endfile

c ccc
c Identify required sfms to be extracted.
c Also store book, chapter, and verse for
c reporting (if required).

group(2)
c ???Insert required sfms here

c ’???’ any(sp) > next
c ’???’ > out(BK,CH,VS) 11 c Output found SFM.

 ifn(3nums) 11 endif
 ’\’ dup use(10)

c ’???’ any(sp) > next
c ’???’ > out(BK,CH,VS) 11 c Output found SFM.

 ifn(3nums) 11 endif
 ’\’ dup use(10)

c ’???’ any(sp) > next
c ’???’ > out(BK,CH,VS) 11 c Output found SFM.

 ifn(3nums) 11 endif
 ’\’ dup use(10)

c If \s is extracted, protect \st!
’st’ > omit use(1)
’s’ any(sp) > next
’s’ > out(BK,CH,VS) 11

 ifn(3nums) 11 endif
 ’\’ dup use(10)

c Store book, chapter, verse number.
’c’ any(sp) > next c Stores chapter number.
’c’ > store(VS) ’0’ endstore c Zero out vs num.

 clear(CH,VS,3nums)
 store(CH) use(3) c Begin storing chp num.

Fig. 21. from EXTRAC.CCT

Mod 14 ‘Doing’ Defined Routines and Repeating Page 103

8/1/96

c EXTRAC.CCT Mod 2 13-JUN-89
c Use: for extracting selected SFM elements
c Based on FLAGEM.CCT
c Search for "???" to find sections of the change table
c that you must alter.
begin >

 store(sp) ’ ’ nl C SFM terminators
 store(BK) ’’ C for Book name storage
 store(CH) ’0’ C Chapter number storage
 store(VS) ’0’ C Verse number storage
 store(num) ’1234567890’ C Legit chapter num’s
 store(VsDiv) ’abc’ C verse divisions
 store(BkMsg) nl ’BOOK: ’ C book name message
 store(ChMsg) ’Chap: ’ C chapter message
 use(1)

c Outputs extracted element.
define(Extract) >

 out(BK,CH,VS) 11
 ifn(3nums) 11 endif
 ’\’ dup use(10)

c cc
c Finds sfm initiators and strips all else.

group(1)
’\’ > use(2)
’’ > omit
endfile > endfile

c cc
c Identify required sfms to be extracted.
c Also store book, chapter, and verse for
c reporting (if required).

group(2)
c ???Insert required sfms here

c ’???’ any(sp) > next
c ’???’ > do(Extract) c Output found SFM.

c ’???’ any(sp) > next
c ’???’ > do(Extract) c Output found SFM.

c ’???’ any(sp) > next
c ’???’ > do(Extract) c Output found SFM.

c If \s is extracted, protect \st!
’st’ > omit use(1)
’s’ any(sp) > next
’s’ > do(Extract)

c Store book, chapter, verse number.
’c’ any(sp) > next c Stores chapter number.
’c’ > store(VS) ’0’ endstore c Zero out vs num.

 clear(CH,VS,3nums)
 store(CH) use(3) c Begin storing chp num.

(continued on next page)

Fig. 22. EXTRAC.CCT

Page 104 International Publishing Services PAD-CCP

8/1/96

routines are short and aid significantly in understanding what the
table is about, it would be best to put them after the begin entry. If
they are lengthy, mundane routines such as report writing, they
would best be placed at the end. Under no condition can they be
placed before the begin entry.

Sometimes when the begin entry has lengthy commands that do not

’id’ any(sp) > next
’id’ > ’’ c Strip "\id"

 store(BK) fwd(3) c Stores book name.
 endstore

 wrstore(BkMsg) c Display book name.
 wrstore(BK) write nl
 out(BK) c 1st 3 ltrs of name
 append(BK) ’ ’ endstore c Space after bk
 store(CH,VS) ’0’ endstore
 use(10) c Output id line.

’v’ any(sp) > next c Stores verse number
’v’ > clear(VS) store(VS) use(4)
’’ > omit use(1) c SFM not requested

c ccc
c Finish storing the chapter number.

group(3)
any(num) > dup c Dup numbers.

 if(CH) set(3nums) endif
 set(CH)

any(sp) > endstore wrstore(ChMsg) c Display current
 wrstore(CH) write nl c chapter number.
 append(CH) ’:’ endstore c Add a colon after

 c chapter number.
 ’’ use(1)

c ccc
c Finish storing the verse number.

group(4)
any(VsDiv) > dup c Verse division!
’,’ > next c Verse bridge.
’-’ > dup
any(num) > dup

 if(VS,CH) set(3nums)
 endif

 set(CH,VS)
any(sp) > endstore ’’ use(1)

c ccc
c Output the requested element.

group(10)
any(sp) ’\’ > next
’\’ > nl use(2)

Fig. 22. EXTRAC.CCT continued

Mod 14 ‘Doing’ Defined Routines and Repeating Page 105

8/1/96

add to the understanding of the table, these commands can be placed
in a define . The define can then be placed at the end of the table
where it does not hinder the readability of the table. This is done
even when the routine will only be performed once.

For consistency, place all define routines together in the table.

Do/define routines can also be nested to a depth of 10. Nesting re-
fers to cases where a define contains within its replacement a sub-
sequent do command, as shown in the following example:

EXAMPLE

...
group(3)
nl "\" > next
"\" > endstore c stop store at end of last element

do(message)
nl "\" back(1)
use(5)

...
define(message) > do(reference)

 out(capture)
define(reference) > out(book, chpt, verse)

" contained "

When the input matches one of the search entries in group(3) , the
current storing will be ended and the actions defined as ‘message’
will be performed. The first action in ‘message’ calls for executing
the actions in ‘reference’, so processing branches to this define .
Here the contents of ‘book’, ‘chpt’, and ‘verse’ will be sent to out-
put, followed by the sequence " contained " . Processing returns
to the second line of define(message) and the string stored in stor-
age area ‘capture’ is written to output. Then processing returns to
group(3) and continues with outputting nl and the backslash, backs
up over the backslash, and changes to group(5) .

This can be represented by the following block diagram.

It is a safe practice to make begin the first command within a de-

fine and make end the last, especially when its corresponding do

command appears in the conditional part of any ‘if’ command.

... group(3)

’\’

’\’

 define
(message)

group(5)

 define
(reference)

...

 do
(ref)

Page 106 International Publishing Services PAD-CCP

8/1/96

2. Re-executing a series of replacement commands with repeat — This re-
placement side command causes the processing flow to go back to
the previous begin in the replacement actions for that search entry:

EXAMPLE

"\" > do(errmsg)
 store(linechars) ’0’ endstore
 begin c beginning of repeat loop
 "*" incr(linechars) c fill out line with *
 ifneq(linechars) "68" repeat

 c repeat until line filled
 endif
 end
 use(5)

In this example, the replacement actions would be executed in a se-
quential manner until the if command is encountered. At the if

command, as long as the ‘linechars’ storage area contains a number
not equal to ‘68’, the repeat is executed, and the processing flow
will immediately jump back to the previous begin and resume se-
quential execution. When ‘68’ is reached in the ‘linechars’ counter,
then the repeat command will not be executed and processing flow
will continue on sequentially.

PRACTICE ACTIVITIES and QUESTIONS

1. LIST the following tables, and answer the associated questions
for each:
a. SEQ.CCT

– How many times is define(1) executed? _____________
– Why was it made into a define ?_____________________

– When is define(99) executed? _____________________
– What does it do? _________________________________

b. FLAGEM.CCT

– What define s are used; how many table entries cause each
to be performed; and what is the purpose of each?

Define # of do’s Purpose of define

________________ ______________ __

________________ ______________ __

________________ ______________ __

Mod 14 ‘Doing’ Defined Routines and Repeating Page 107

8/1/96

c. CSTCHK.CCT

– Are there any nested “do’s”? _______________________
– To what depth?___________________________________
– Define(2) is only one line long. Is that a worth while use

of define, and why? _______________________________

2. Fig. 23 shows the relevant portions of WDLENG.CCT. Rewrite the
table (except for comments), placing the initializing of the count-
ers into a define .

Page 108 International Publishing Services PAD-CCP

8/1/96

3. Below is a block diagram of WDLENG.CCT after being modified
in Activity 2 above. Label the empty boxes and the blank under-
score with the appropriate names of groups and defines.

c WDLENG.CCT Mod 2 15-JUN-90
c This table counts letters in words and outputs number
c of occurrences of words with 1 character, 2 characters
c etc found in the output of the word list program.
c Assumptions:
c 1 All references have been deleted from the file .
c 2 " page headings " " " " "
c 3 " reference counts " " " " "
c 4 An id line has been inserted in the file being read.
c 5 A \p occurs after id line and before first word.
c
begin > caseless

C COUNTERS FOR WORD LENGTH
 store(1) ’0’ store(2) ’0’ store(3) ’0’
 store(4) ’0’ store(5) ’0’ store(6) ’0’
 store(7) ’0’ store(8) ’0’ store(9) ’0’
 store(10) ’0’ store(11) ’0’ store(12) ’0’
 store(13) ’0’ store(14) ’0’ store(15) ’0’
 store(16) ’0’ store(17) ’0’ store(18) ’0’
 store(19) ’0’ store(20) ’0’ store(21) ’0’
 store(22) ’0’ store(23) ’0’ store(24) ’0’
 store(25) ’0’

 store(long) ’0’ c Cntr for wds over 26 chars
 store(wds) ’0’ c Total word counter

 store(diac) "’~_" ’"’ c diacritics
 store(sp) ’ ’ nl c word enders
 store(ct) ’0’ c counts characters
 endstore clear(1) use(1)

...

Fig. 23. from WDLENG.CCT

begin

do_____

start

"\id "

nl

space

space, &/
 or \p

endfile
do_____

(Refer to the file on your student disk to

complete this practice activity.)

Mod 14 ‘Doing’ Defined Routines and Repeating Page 109

8/1/96

READING ASSIGNMENT

CC User’s Guide: 14 define, 14 do, 23 repeat

EXERCISES

1. On a separate sheet of paper to turn in, draw a block diagram of
7CHAR.CCT, including its define . (Refer to Fig. 7 in Mod 4)

2. Fig. 24 shows an extract of table code. On the same paper used
for Exercise 1, write the entries to consolidate the common com-
mands to a define . Write both the define entries and the entries
from which those commands were taken.

c Non indented prose in an introduction.
’\im’ any(sp,sp) > next
’\im’ any(sp) > next
’\im’ > if(2ndTag) nl nl

 else set(2ndTag)
 endif

c Outline elements in an introduction.
’\io ’ > if(2ndTag) nl nl

 else set(2ndTag)
endif
’@OUT INT = ’ set(txt) use(1,10)

’\io1 ’ > if(2ndTag) nl nl
 else set(2ndTag)
endif
’@OUT INT 1 = ’ set(txt) use(1,10)

’\io2 ’ > if(2ndTag) nl nl
 else set(2ndTag)
endif
’@OUT INT 2 = ’ set(txt) use(1,10)

’\io3 ’ > if(2ndTag) nl nl
 else set(2ndTag)
endif
’@OUT INT 3 = ’ set(txt) use(1,10)

c Paragraph in an introduction.
’\ip’ any(sp,sp) > next
’\ip’ any(sp) > next
’\ip’ > if(2ndTag) nl nl

 else set(2ndTag)
endif
’@PAR INT = ’ clear(txt) set(int)
use(1,10)

Fig. 24. from VPNAM.CCT

Page 110 International Publishing Services PAD-CCP

8/1/96

Mod 14 ‘Doing’ Defined Routines and Repeating Page 111

8/1/96

Mod 15 Reading from the Keyboard
and Writing to the Screen

COMMANDS/TOPICS COVERED

write read wrstore

OBJECTIVES

At the end of this module, the student will be able to:

• demonstrate an understanding of read , write , and wrstore by modi-
fying and/or writing tables properly using them;

• modify a table to include the display of book and chapter as the input
is processed.

INSTRUCTION

1. Providing user information on the screen— The write command is
used to send the character string following it to the screen:

"search argument" > write "string"

The character string may only include nl ’s and characters in delimit-
ers. The string is terminated by any subsequent command (except for
nl or c). The write command does not affect the normal direction
of output (i.e., the output file or storage area).

The write command can be used to provide the user with certain in-
formation, as in the following example:

EXAMPLE (from LONGWD.CCT)

C **
C LONGWD.CCT modified for PAD-CCP, May 1991, by K. Seitz
C -- a table to make list of all words of certain length or
C longer. For use in setting up a hyphenation table.
C **

begin > store(1) " " nl ",.:;><!\|()$#/’0123456789"
 endstore
 write nl ’***’
 write nl ’* *’
 write nl ’* This table selects all words in a file of *’
 write nl ’* a certain length or longer. It is helpful *’
 write nl ’* in deciding which words to hyphenate. Best *’
 write nl ’* when used on a word-list. *’
 write nl ’* *’
 write nl ’***’

Page 112 International Publishing Services PAD-CCP

8/1/96

2. Constructing an interactive table with write and read — The write

command can also be used to ask the user for a keyboard response
which will then be input to the processing by a read command. If
storing is in progress, the keyboard response (up to but not including
the <ENTER>) will be sent to the storage area; otherwise, it is sent di-
rectly to the output file.

EXAMPLE 1 (from LONGWD.CCT)

C **
C LONGWD.CCT modified for PAD-CCP, May 1991, by K. Seitz
C -- a table to make list of all words of certain length or
C longer. For use in setting up a hyphenation table.
C **

begin > store(1) " " nl ",.:;><!\|()$#/’0123456789"
 endstore
 write nl ’***’
 write nl ’* *’
 write nl ’* This table selects all words in a file of *’
 write nl ’* a certain length or longer. It is helpful *’
 write nl ’* in deciding which words to hyphenate. Best *’
 write nl ’* when used on a word-list. *’
 write nl ’* *’
 write nl ’***’
 write nl nl ’ENTER LENGTH OF WORDS ’
 write ’(IN NUMBER OF CHARACTERS) DESIRED: ’

 store(2) read endstore
 store(3) ’0’ endstore
 store(5) ’abcdefghijklmnopqrstuvwxyz’
 ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’ endstore

group(1)
any(5) > store(4) dup incr(3)

use(10)
any(1) > ’’
’’ > ’’ fwd(1)
endfile > endfile

group(10)
’’ > dup fwd(1) incr(3)

 ifeq(3) cont(2)
 use(20)
endif

any(1) > store(3) ’0’ endstore
use(1)

group(20)
’’ > dup fwd(1)
any(1) > endstore out(4) nl

 store(3) ’0’ use(1)

Mod 15 Reading from the Keyboard

and Writing to the Screen Page 113

8/1/96

EXAMPLE 2 (from WRDLST.CCT)

In the first example, the keyboard response was read into storage
area ‘2’ to be used in future decisions/changes in the table. In the sec-
ond example the keyboard input was not needed for the table proc-
essing and went directly to the output file.

(The read command causes the processing to halt until the <ENTER>

key is pressed.)

3. Writing storage area contents to the screen with wrstore(name) — An-
other helpful command for outputting information to the screen is
wrstore(name) . It causes the contents of the named storage area to
be written to the screen.

EXAMPLE (from 7CHAR.CCT)

The first half of the above define outputs the final report to the out-
put file. Then the write and wrstore commands put the same infor-
mation to the screen for immediate access. Notice that wrstore is a
command in itself. If it follows a write command, that write com-
mand is terminated and must be re-issued to output additional infor-
mation to the screen.

4. Using write/wrstore to display on screen the extent of progress—
When a complete New Testament or Bible is input to CC, the proc-
essing can take awhile. It is sometimes reassuring to display on

c ccc
c CREATE an id line by asking for
c a response from the keyboard.

group(1)
’’ > "\id "

 write nl
 "What goes into the id line?" nl
 read c This expects a response from the user
 use(2)

c ^
c OUTPUT THE FINAL REPORT
c TO THE FILE AND THE SCREEN.

define(Rep) >
nl out(TotWds) " total words"
nl out(DelWds) " deleted words (less than 7 chars)"
nl out(RetWds) " retained words (7 + chars)"
endfile

 write nl wrstore(TotWds) write " total words" nl
 wrstore(DelWds)

write " deleted words (less than 7 chars)" nl
 wrstore(RetWds) write " retained words (7 + chars)" nl

Page 114 International Publishing Services PAD-CCP

8/1/96

screen the book and chapter number currently being processed. This
at least lets you know that the processing is progressing and is not
hung in a loop (such as the one cautioned about in Mod 8 involving
the null search argument). The example below shows one way that
the book and chapter can be written to the screen.

EXAMPLE

begin > store(bk) "" c for book name
 store(bkmsg) nl "Book: " c book name message
 store(ch) "0" c chapter no. storage
 store(chmsg) d27 "[40D" d27 "[11C" "Chap: "

 c chapter message
 store(chtab) " " c overwrite spurious chars
 endstore
...
group(2)
"\id " > store(bk) fwd(3) endstore c store book name
 wrstore(bkmsg) wrstore(bk) c write to screen
"\c " > store(ch) use(5)
...
group(5)
any(num) > dup
any(sp) > endstore
 wrstore(chmsg)
 wrstore(ch)
 wrstore(chtab)
...

This example only shows those entries necessary for the screen dis-
play. These, of course, would be combined with the entries for the
major purpose of the table. There are two things worth pointing out
in this example:

a. The string stored in ‘chmsg’ in the begin is a video screen ‘es-
cape’ sequence that causes the chapter numbers to overlay each
other when they are written to the screen rather than appearing
side by side. The codes used are specific to certain video screens.
Different video screens may require different codes. (Remember,
"d27" in CC, as seen in this example, means ‘decimal 27’, which
is the escape character.)

b. The fixed contents of storage areas ‘bkmsg’, ‘chmsg’, and ‘chtab’
could have been performed as strings following write com-
mands within group(2) and (5) . One reason for putting them
into storage areas following the begin statement is to make them
more accessible in case they need to be modified.

Mod 15 Reading from the Keyboard

and Writing to the Screen Page 115

8/1/96

PRACTICE ACTIVITIES and QUESTIONS

1. Write a table that would ask the user for his name, and then re-
spond to the screen with:

Hi, (name)! You have successfully completed
this activity. Congratulations!!

Since CC requires an input file, write this table so the message
will print regardless what the data says (try using a null match).
Also be sure to provide for a way to end the program after print-
ing the message once.

2. Assume that a storage area ‘count’ contains the number of verses
found in a file. Write a command that would output the message
"There were _____ verses found" to the screen with the appro-
priate number being placed in the blank.

READING ASSIGNMENT

CC User’s Guide: 23 read, 26 write, 26 wrstore

EXERCISES

1. Write a table that will:
a. ask the user for the SFM used for chapter numbers and store it;

b. ask for the SFM used for section heads and store it;

c. read the input file EMLK.SFM, counting the number of chapters

and section heads; and

d. output a message both to the screen and in the output file giv-

ing the proper counts of chapter and section head SFMs. (You

may choose to omit all other text from output or pass it un-

changed to the output.)

LIST the input file to determine how to answer the questions for

Page 116 International Publishing Services PAD-CCP

8/1/96

SFMs used. After successfully running CC, print out your table
and hand it in.

2. Modify REFIND.CCT (see Fig. 8. Mod 4; also on your disk) to dis-
play the book name and chapter number on the screen as the in-
put file is processed. (You may pattern your modifications from
the example shown in this module if you wish. You may try over-
laying the chapter numbers or display each chapter number on a
new line.)

After successfully running CC using EMLK.SFM as your input file,
print out your table and hand it in.

3. Run CC using the table you created in question 1 of the Practice
Activities section above. Use any input file.

Mod 15 Reading from the Keyboard

and Writing to the Screen Page 117

8/1/96

Mod 16 Calculating with CC

COMMANDS/TOPICS COVERED

add mul mod
sub div

OBJECTIVES

At the end of this module, the student will be able to:

• demonstrate an understanding of add , sub , mul , div , and mod by ana-
lyzing table logic and providing the results of table entries.

INSTRUCTION

Commands are available for adding, subtracting, multiplying, dividing,
and finding the remainder after a division. These all involve storage
areas and are replacement side actions. They are not frequently used in
publishing preparation, but are quite useful when mathematical calcula-
tions are necessary.

1. add(store1) "number" — To the number stored in ‘store1’ add
the number represented by the string ‘number’, placing the result in
storage area ‘store1’.

2. sub(store1) "number" — From the number stored in ‘store1’ sub-
tract the number represented by the string ‘number’, placing the re-
sult in storage area ‘store1’.

3. mul(store1) "number" — Multiply the number stored in ‘store1’
by the number represented by the string ‘number’, placing the result
in storage area ‘store1’.

4. div(store1) "number" — Divide the number stored in ‘store1’ by
the number represented by the string ‘number’, placing the whole-
number portion of the result (quotient) in storage area ‘store1’, and
discarding the remainder.

5. mod(store1) "number" — This is the same as a div operation ex-
cept that the remainder portion of the quotient is placed in ‘store1’,
and the whole-number portion is discarded.

The cont(name) command could be used in place of "number" with
any of the math commands.

Page 118 International Publishing Services PAD-CCP

8/1/96

EXAMPLE

...
endfile > store(total) outs(SFM_errs) endstore

 add(total) cont(ortho_errs)
 add(total) cont(quote_errs)
 "Total errors: " out(total) nl
 "Orthographic errors: " out(ortho_errs) nl
 "Quote system errors: " out(quote_errs) nl
 "SFM errors: " out(SFM_errs) nl
 store(misused) outs(SFM_errs) endstore
 sub(misused) cont(unident)
 "Unidentified SFMs: " out(unident) nl
 "Misused SFMs: " out(misused) nl
 store(%calc) outs(SFM_errs) endstore
 mul(%calc) "100"
 div(%calc) cont(total)
 "SFM errors (as percent of total): "
 out(%calc) "%" nl
 endfile

PRACTICE ACTIVITIES and QUESTIONS

1. Write the output from the above example if SFM_errs = 10,
ortho_errs = 7, quote_errs = 3, and unident = 4.

__

__

__

__

__

__

__

2. Write the additional entries that would be needed to calculate and
output a message giving the percentage of SFM_errs caused by un-
identified SFMs.

__

__

__

__

__

READING ASSIGNMENT

CC User’s Guide: 11 add, 14 div, 20 mod, 21 mul, 25 sub, 44-45 Arith. Cmds.

Mod 16 Calculating with CC Page 119

8/1/96

