Consistent Changes
for Publishing

PAD-CCP

written by
Karelin Seitz

edited by
Kenneth Hubel

International Publishing Services
Summer Institute of Linguistics
7500 W. Camp Wisdom Rd.
Dallas, TX 75236
(972) 708-7440
FAX: (972) 708-7388

8/1/96

© 1992 Summer Institute of Linguistics
Dallas, TX 75236

8/1/96

Table of Contents

Introduction e 1

Mod 1 Introduction to Consistent Changes 8

Mod2 BasicCCSyntax 12
search & replace character string comments
right wedge delimiters running CC

Mod 3 Setting the Stage Before YouBegin 20
search order nl caseless
search pointer begin

Mod 4 Grouping Table Entries 28
group incl excl
use

Mod 5 Using Storage Areaso 40
store any
endstore command line running of CC

Mod 6 Matches Conditioned by Environment 46
prec wd
fol display/debugging option

Mod 7 GettingitOutof Storage 54
out outs append

Mod 8 Moving TextOn Through 60
dup endfile null
next omit

Mod9 GoingToAndFro 66
fwd what can be searched for
back what can be sent to output

Mod 10 Introductionto Switches 74
switches if endif
set else visual alignment

Mod 11 More On Switches 80
clear ??? search technique
ifn mark & rewind technique

Mod 12 ‘If' Commands Using Stores 86
ifeq ifneq cont
set(dummy) ifgt incr

8/1/96

Mod 13 ‘If' Commands—Advanced Techniques 96
begin more mark and rewind
end nesting ‘ifs’

Mod 14 ‘Doing’ Defined Routines and Repeating 102
define do repeat

Mod 15 Reading from the Keyboard and Writing to the Screen . . . 112
write read wrstore

Mod 16 CalculatingwithCC 118
add mul mod
sub div

Table of Figures

Fig. 1. Inputand OutputFlow. 8. .

Fig. 2. Inputand Output Flow Sample. 9 .

Fig. 3. WDLSTRIP.CCT ChangeTable. 29

Fig. 4. Sample Inputand Output. 30.

Fig.5. BlockDiagram. e 31 .

Fig.6. CAPCHK.CCT. e e 34 .

Fig.6 CAPCHK.CCTcontinued. 35.

Fig. 7. 7CHAR.CCT e e e e 36 .

Fig. 7. 7CHAR.CCT continued. 37.

Fig. 8. REFIND.CCT e e e e e 38 .

Fig. 9. EMCHEK.CCT. e e 45 .

Fig. 10. Verse Number Attributes for Ventura 58

Fig. 11. FLAGEM.CCT e e e e e e 82 .

Fig. 12. Mark and Rewind Technique. 83

Fig. 13. from VPNAM.CCT o e e 89.

Fig. 14. LONGWD.CCT o ot e e e e e 90 .

Fig. 15. from FIXEM.CCT e e e 90 .

Fig. 16. from CSTCHK.CCT. e i e s 91.

Fig. 17. from WRDLST.CCT. e e s e e e 92.

Fig. 18. from VPNAM.CCT group(3) o« o o v vt e i 929

Fig. 19. from VPNAM.CCT group(107).« . . o v v v .. 99

Fig. 20. from STDFIX.CCT group(10). 100

Fig. 21. from EXTRAC.CCT o et e e e 103.

Fig. 22. EXTRAC.CCT e e e e 104 .

Fig. 22. EXTRAC.CCT continued. 105.

Fig. 23. from WDLENG.CCT oo it e 109.

Fig. 24. from VPNAM.CCT o e e 110.

8/1/96

Introduction

Introduction

The Consistent Changes progranc.EXE) is a powerful program

with many uses. This course is designed specifically for those appli-
cations involved in preparing a manuscript for publishing. All exam-
ples and exercises are taken from that context. Course coverage
includes allcc commands and many helpful techniques.

Constructing ac table is very much like computer programming.
Therefore, those individuals with programming experience or apti-
tude will probably advance more quickly and perhaps further in their
understanding ofc than those without such background/aptitude.
However this should not discourage anyone from this course!

There are several different levels on which one may work®gth
Within the publishing context, much of the work wat@ is in using
establisheatc tables which may require only minor job-specific
modification.

Each individual has his own strengths, weaknesses, and aptitudes. It
has often been found that those having the ‘programming’ aptitude
for cc lack some of the other aptitudes for camera-ready page pro-
duction—such as aptitudes for graphic layout or for repetitive work
requiring thoroughness and attention to detail. There is a need for a
mix of individuals with varying talents and aptitudes to be involved

in different capacities in the publishing process. But it is important
for all of them to have some level of understanding of Consistent
Changes.

This course is designed to allow each individual to work at that level
which is appropriate for him. The following course objectives are
stated in terms of three different levels of proficiency. Each student
should set his expectations according to his background, aptitudes,
and the requirements of his specific assignment.

8/1/96

Page 1

Page 2 International Publishing Services PAD-CCP

Course Objectives

Proficiency Level 1 (On the job, the individual will need direct supervi-
sion by someone with in depth understanding@©fnd the publish-
ing process.)

General: The student will be able to modify an existicdable at
well-defined designated points and musing the modified table.

Specific: The student will be able to activate designated options in
the VPNAM.CCT change table and r@c using this modified table.

Proficiency Level 2 (On the job, the individual will be able to work semi-
independently with occasional assistance from someone with in
depthcc knowledge.)

General: The student will be able to trace the logic flow through
limited sections of an existing complex table, will be able to make
simple to moderate modifications in an existing complex table, will
be able to write simple to moderately complex tables, and will be
able to runcc from prompts or command line.

Specific: The student will be able to make appropriate job-specific
modifications tovPNAM.CCT andFLAGEM.CCT, write increasingly
complex (simple to moderate) job-specific tables, andcwfiom a
command line entry.

Proficiency Level 3 (On the job, the individual will be able to work inde-
pendently, handling any level of complexity.)

General: The student will be able to understand and extensively
modify existing complex tables, will be able to write and debug in-
creasingly complex tables, and will be able tocarusing any of

the operation options.

Specific: The student will be able to appropriately modify

FLAGEM.CCT or FIXEM.CCT and write and debug a table of equal
complexity.

8/1/96

Page 3

Course Exercises

The exercises at the end of each module in this course can be di-
vided into three categories that relate to the proficiency levels out-
lined in the Course Objectives. A student’s ability to successfully
complete the exercises within each group can give him a general
idea of his degree of understanding of the Consistent Changes
program.

The exercises in the first category involve basic concepis tiat
most students will be able to grasp, even with little programming or
computer aptitude. Successful completion of these exercises would
bepreliminaryto attaining Proficiency Level 1:

Module Exercise Module Exercise Module Exercise
3 1 9 2 14 1
4 1 9 3 14 2

The exercises in the next category involve simple modifications of
existing change tables and the creation of single entry tables. Suc-
cessful completion of these exercises would indicate the attainment
of Proficiency Level 1 of the Course Objectives:

Module Exercise Module Exercise Module Exercise

2 1 5 2 10 2
2 2 5 3 11 1
3 2 6 1 12 1
3 3 6 2 12 2
4 2 7 1 15 2
5 1 8 3 15 3

The exercises in the last category involve more complex modifica-
tions of existing change tables and the creation of tables that require
greater logical skills. Successful completion of these exercises
would indicate the attainment of Proficiency Level 2 of the Course
Objectives:

Module Exercise Module Exercise Module Exercise

4 3 8 2 13 1
7 2 9 1 13 2
8 1 10 1 15 1

If a student finds that he is able to successfully complete all
exercises in the course with little or no consultation and without feel-
ing overwhelmed, then he is well on his way to attaining Proficiency
Level 3 of the Course Objectives.

8/1/96

Page 4 International Publishing Services PAD-CCP

Orientation for TUTORED Self-Paced Use of Course

This course is to be used ifearning environmentvith anaccessi-
ble tutor/trainer! It has not been designed for solo use. It isdibr
pacedlearning, but noself-taughtiearning.

Required materials include this syllabus, the Consistent Changes
User’s Guide, Consistent Changes softwareHXE version7.4),
and the student disk for this course.

It is recommended that the student work through each module—com-
pleting all activities, questions, reading and exercises, ensuring that
the module objectives have been met, and reviewing work with the
tutor—before moving on to the next module. Modules build on each
other. Once material has been covered, it is assumed that the infor-
mation is understood, and it will be used in later modules without
further explanation.

People learn in different ways. Some need to read the material first

or see it illustrated. Some need to interact with others, discussing the
information, orhearingit presented. Others prefer ‘hands on’ experi-
mentation. The course is designed to accommodate all learning
styles. If you know how you learn best, emphasize that approach,

but do not ignore the other avenues for learning. There are unique ad-
vantages within each.

8/1/96

Orientation for Classroom Use of Course

This course is also well suited to a classroom environment of 4-10
students, with the trainer giving comprehensive instruction to the stu-
dents before they work out the exercise problems.

The tentative classroom schedule is:

Week 1 Week 2
Monday Mod 1, 2, 3 Monday Mod 10, 11
Tuesday Mod 4, 5 Tuesday Mod 12, 13
Wednesday Mod 6, 7 Wednesday Mod 14, 15
Thursday Mod 8, 9 Thursday Review, Mod 16
Friday Review Friday Review, Finish up

To best utilize classroom instruction, it is recommended that the stu-
dentpreviewthe modules that will be taught prior to coming to

class; arunderstandingf the modules is not necessary at this time.
During the morning classroom session the student will receive com-
prehensive instruction covering those modules. In the afternoon the
student should review all material covered in class, then work out
the assigned exercises to gain a further understanding of the con-
cepts taught.

The following chart summarizes when the sections of each module
should be covered:

students trainer students
preview covers review and
before in detail do exercises
class during class after class
Commands/Topics Covered X
Objectives X
Instruction X X X
Vocabulary and Concepts X X X
Practice Activities and Questions X X
Reading Assignment X

Exercises X

8/1/96

Page 5

Page 6 International Publishing Services PAD-CCP

Typographic Conventions Used in This Syllabus

The typographic conventions used in this syllabus will hopefully be-
come self-evident while you read the text. A summary of the pri-
mary conventions used are as follows:

SMALL.CAP Names of files, most of which are located on the

student disk
Typewriter cc commands and keyboarded computer input
<ENTER> Name of key pressed in a single keystroke
<CTRL/C> Names of keys pressed concurrently—much in the

same way as producing upper case (shifted) letters

text words Words defined in Vocabulary sections

data stream CC text data stream showing output text, search
pointer, and input text

16 endstore Page number and paragraph name to be read in
thecc user'sGuide (used in reading assignments)

italic Emphasized text
Note that the typographic conventions used incb&iser'sGuide
are slightly different from those shown here for this syllabus. Con-

sult the table in theser'scuide for the typographic conventions
used there.

8/1/96

Page 7

Distribution of Course Materials

This course syllabus and associated student disk is used in the Con-
sistent Changes for Publishing course taught by International Pub-
lishing Services (IPub) at the International Linguistics Center in
Dallas.

The course materials (syllabus and disk) are available at any time
from IPub as a self-paced course with tutor assistance. Additionally,
the materials may be purchased from IPub for $25.00 plus postage.

Permission is granted to copy the materials as long as the syllabus
and disk files are not altered. Any corrections or suggested changes
should be submitted to IPub—User Suppart;N: PAD-CCFP, at the
address below.

For those using the materials outside of IPub, a registration fee per
student ($10 fosIlL member or employee, $20 for nen) will enti-

tle the student to receive a critique of their exercises, and, if satisfac-
torily completed, IPub Course Completion certificate.

To register for a classroom or self-paced course at IPub, or to pur-
chase the syllabus and disk, or for further information contact:

User Support

International Publishing Services
7500 W. Camp Wisdom Rd.
Dallas, TX 75236 USA

phone: (972) 708-7364
fax: (972) 708-7388

8/1/96

Page 8

International Publishing Services PAD-CCP

Mod 1 Introduction to Consistent Changes

OBJECTIVES

At the end of this module, the student (from memory) will be able to:

» draw a block diagram afc showing inputs and output,
* name at least three wags is used in preparing a manuscript for
publishing.

INSTRUCTION

1. What is Consistent Changes?
Consistent Changesd) is a computer program written byARS. It
will apply a set of specified changes to one or more text files in a
consistent manner. In its simplest form it functions likessarch
and replace feature of a word processor. How&@can also be
used to count specific items, insert or delete items, extract or reorder
items, and report on conditions found. It can also do these things in a
context sensitive way.

2. How does Consistent Changes work?
cc must have two inputs: the file to be changed and a file describing
the changes to be madxrc produces one output file. Neither of the
input files are changed by runniog. (See Fig. 1)

The file describing the changes to be made is calddiage table.
The file name for the change table is usually given the extension
.CCT to designate it as@C change table. The change table must be
created before runningc. Any word processor or text editor that
can create anscll file may be used.

Change
Table
Input Consistent Output
Text — Changes I Text
File Program File

Fig. 1. Input and Output Flow

8/1/96

Mod 1

Introduction to Consistent Changes

Change Table
\B to \mt
Input File l Output File
\id MAT . \id MAT
\B Gospel of Matthew Consistent \mt Gospel of Matthew
\c1 — Changes —| ¢l
\s This is the story of ... \s This is the story of ..
\p Program \p
Wi.. W1l..

Fig. 2. Input and Output Flow Sample

The basic process flow aft is summarized in Figure 2. The change
table and the input file are read and compared. When input text
matches an entry in the table, the corresponding change is made in
the output; any input text that is not matched in the change table is
passed on to the output unchanged.

As with all computer programs, specific commands and correct
syntax are required to describe the changes that are to be made so
that thecc program will be able to correctly perform them. This

co
ch

urse will teach you how to properly describe changes in the
ange table to produce the desired changes in the text file.

3. How is Consistent Changes used in preparing manuscripts for publishing?
ccis one of the most powerful and versatile tools we have for identi-

fyi

graphic representations, spelling and other aspects of the manuscript

co

ng, verifying, and correcting generic codes, punctuation, ortho-

ntents and structure.

Some of the specific uses include:

error flagging

counting words, elements, etc.

correcting spelling, Standard Format Markemms), etc.
cleaning up unnecessary spaces, markers, etc.

reordering text elements

extracting specific text elements for review or separate processing
stripping unneeded text elements

exchangingFwms for format commands used by the formatting
program

inserting text attributes

exchangingligraphs for a single substitute charactesstil code
marking valid potential hyphenation points in the text

8/1/96

Page 9

Page 10 International Publishing Services PAD-CCP

VOCABULARY and CONCEPTS

AscIl file—a text file that contains only standaysiCli codes, with
no formatting or control codes (e.g., output froRdARSED pro-
gram, omms-word when file is saved unformatted.)

change table—in Consistent Changes, the table specifies what is to
be searched for in the text; under what conditions it will be con-
sidered a match; and what action to take when a match occurs.

consistent change-the same change is applied in the same way
each time the same specified circumstance is encountered.

context sensitive—both the ‘search’ and the ‘replace’ (or action to
be taken), can be restricted or changed by the surrounding text or
conditions encountered.

digraphs—two or more successive characters used to represent a
special character or accented character.

search and replace-there are two components: the ‘search’ compo-
nent and the ‘replace’ component. The text is searched for the
‘search’ component. When it is found, it is replaced with the ‘re-
place’ component.

syntax—the way in which commands or instructions are spelled or
structured according to the specific program’s requirements.

QUESTIONS

1. The search and replace feature on a word processor can do every-
thing that Consistent Changes can do.
Ot O F

2. The input file will be altered according to the changes specified by
the change table wheat is run.
Ot O F

3. Name three ways that is used in preparing manuscripts for publi-
cation.

8/1/96

Mod 1 Introduction to Consistent Changes Page 11

READING ASSIGNMENT

CC User’s Guide: 5 Creating a Change Table
(Interpret this to mean: Read the section entitled “Creating a Change Table”
found on page 5 of the CC User’s Guide at the back of this syllabus.)

8/1/96

Page 12 International Publishing Services PAD-CCP

Mod 2 Basic CC Syntax

COMMANDS/TOPICS COVERED

search & replace character string comments
right wedge delimiters running CC
OBJECTIVES

At the end of this module the student (using notes, syllabus, aw/or
user'scuide) will be able to:

 create and/or modify a change table file to make simple orthographic
or Standard Format MarkersHyv) changes.

» document the table internally with comments

* runcc from theDos prompt

INSTRUCTION

1. Search and Replace Arguments— An entry in a change table consists
of two basic parts: an item to search for, and an action to take when
the item searched for is found. These parts are known as the search
argument and the replacement argument, respectively. They are writ-
ten in the change table withright wedge between them as follows:

"search argument" > "replacement argument"

A space or tab must precede and follow the wedge. The search argu-
ment and wedge must fit @meline; but the replacement argument
may be multiple lines.

One thing that can be searched for ¢haracter string. It must be en-
closed indelimiters to indicate tac that this is data rather than an
instruction. Incc, either the apostrophe or inch marko¢ ", but not

the grave accent) may be used as a delimiter, and the beginning and
ending delimiters must match. Strings containing badind” must

be represented in pieces (though together they are still considered a
single character string):

'The man said, "I’ "don't" ’'remember.

A character string can also be used as a replacement argument. A
simple entry in a change table would be:

"character string 1" > "character string 2"
This would search for “character string 1” in the input file and,

8/1/96

Mod 2

Basic CC Syntax Page 13

when found, would replace that string in the output file with
“character string 2”.

NOTE: Some text processors suchxgsvrite require pressing
<ENTER>at the ends of every line of the change table to ensure that
they terminate with @r/LF (carriage return and line feed). Do not
assume that the editor’s “auto-wrap” feature automatically adds the
CRI/LF simply because it looks rigbt the computer scree(The

JAARS ED programdoesauto-wrap properly.) Change tables keyed
usingMs-word must be saved in “text only” mode with line breaks.
All lines in a change table must conta@s characters or less from

the beginning of the line to its correspondg@rJLF. Longer lines

will be truncated, resulting in potential errors.

2. Commands— A command is a word that has special meaning to the

cc program. Commands function as instructions tacth@rogram.
All commands must appear in lower case letters. Some commands
require a parenthesized argument.

Commands are never enclosed in delimiters. If delimiters are used,
cc will treat the commands as character strings. Commands are al-
ways surrounded by space (i.e., a space, a carriage return, or a tab).
(Note: if a command requires a parenthesized argument, the space
must occuifter the parenthesized argumenot after the command
itself.)

3. Comments— Comments can be inserted into the change table to ex-

plain what an entry is doing or why it is being done, as well as what
the purpose of the table is, who wrote it, when, etc. Comments are
anextremelyimportant part of any change table that is more than a

few lines long or will be used more than once.

A change table frequently becomes a standard tool requiring only mi-
nor modification for each use. Comments are necessary for even ex-
periencedcc users to understand and modify change tables.

A comment consists of the letter surrounded on both sides by
space (i.e., a space, a carriage return, or a tab), with the text follow-
ing it on the same line. The may be at the beginning of a line mak-
ing the whole line a comment, or to the right of an entry making the
rest of the line a comment. The lettermay be either lower or up-

per case. (This is thenly command that may appear upper case.)

The following example includes various comments:

8/1/96

Page 14 International Publishing Services PAD-CCP

ccceccececceccecceccecccecccccccccccc

c c
¢ This table makes simple SFM corrections. ¢
c c

cccccccccecececececcecccccceccecccce
“\B" > "\mt" c¢ change \B to \mt

¢ other SFMs to be changed may be added below.

4. Running CC from the DOS prompt— After you have created a change
table file, it is very simple to run th&c program. The program will
ask you for the information it needs. To wafrom theDOS
prompt, enter:

CcC <ENTER>

Note: CC.EXEmust be in a directory thas knows to search.
Ordinarily, this means it will be in a directory which is listed in the
PATH* command in the\UTOEXEC.BAT* file on your computer.
When you rurcc, your default directory* should be the directory
your change table (and/or input) is in.

After enteringcc, assumingposwas able to find the program, it
will respond with the program version and date, and then will ask:

Changes file?
Respond with the name of your change table file.
Changes file? mytable.cct <ENTER>

If no extension is entered for the file narae,will first look for a

file by that name without an extension, but if none is found, it will
appendccT to the file name. Remember to add the path name if the
change table is not in the default directory.

cc will then ask:

Output file?

Note that the output file promptecedeghe input file prompt!
Respond with the file name you want given to the output file to be
created.

* |If these terms are not familiar to you, consult your DOS manual.

8/1/96

Mod 2

Basic CC Syntax

Output file? myoutput.txt <ENTER>
If a file by that name already exists, the program will notify you
with:

(filename) already exists, Replace it? [NO]

TheNo in brackets is the default answer if you just prEssTER>,
No or <ENTER> will result inOutput file? being asked again.

If the file does not already exist or if you answer the message
"(filename) already exists. Replace it? [No]" with 'y (for
yes), the program will immediately create a file with zero content by
that name. For this reason you mostername the output file the
same as the input. The input file will be zeroed out and you will
havelost it

After the output file name is established, the program will ask:
Input file?

Respond with the name of your input file including the path if it is
not in the default directory.

Input file? c:\mydir\myinput.txt <ENTER>
When the end of the input file is encountered, the program will ask:
Next input file (<RETURN> if no more)?

This allows you to continue processing additional files and the out-
put to be combined into one output file. PressiBYTER>signifies

that there are no more files to be processed, and the program will
finish up.

VOCABULARY and CONCEPTS

character string—one or more characters representing literal text
rather than a command asCll code. A string may be used on
the search or replacement side and must be enclosed in single or
double quote delimiters.

command—a word having specific meaning to tbe program. It is
typed in lower case letters and not enclosed in delimiters.

delimiters—a character used at the beginning and end of an item to
indicate the item’s boundaries.d,” or" can be used as a

8/1/96

Page 15

Page 16 International Publishing Services PAD-CCP

delimiter, but the beginning and ending delimiter for an item
must be the same. Examplessarch’ and "search"

LIST —LIST.COM is a shareware utility that will display a file on the
screen. It is for browsing only as it does not have editing capabil-
ity. It has been included on the student disk for use in this course.

right wedge—the character also known as a closing angle bracket.
This character signifies the end of a search argument.

¢ AFRIORTH.CCT: group 10 orthographic changes for Africa.
group(10) ¢ ORTHOGRAPHY TABLE
¢ PUNCTUATION
" > T c square open bracket
b)) > T c square close bracket
fn > '<P10MJ230>n<P255DJ0>’ ¢ ftnote mrkr in text
= > '<197> ¢ EM dash
=’ > <>’ ¢ dup discretionary hyphen
<<’ > '<169>’ ¢ English open double quote,
>>’ > '<170>’ ¢ English closing double quote
c << > '<214> ¢ French open dbl quote (alter CST)
c >> > '<215> ¢ French closing dbl quote (alter CST)
< > ¢ English open single quote
> > ¢ English closing single quote
c > > ¢ French closing sgl quote (alter CST)
c < > ¢ French open sgl quote (alter CST)
¢ DIACRITICS
"a" > '<141> cacutelca
e > '<142> cacute lc e
i > '<143> cacutelci
"o" > '<144> cacutelco
"u" > '<145> cacutelcu
c "le" > '<146>’ ¢ acute Ic epsilon
c "lo" > '<147> c acute Ic au
c "u" > '<148> ¢ acute Ic barred u MUST ADD TO CST
A" > '<149> c ACUTEUCA
"E" > '<150>’ c ACUTEUCE
"l > '<151> c ACUTE UC |
0" > '<152>’ c ACUTEUCO
"y > '<153> c ACUTEUCU
c "/E" > '<154>’ ¢ ACUTE UC EPSILON
c "/0" > '<155>’ ¢ ACUTE UC AU
c "/U" > '<156>’ ¢ ACUTE UC BARRED U MUST ADD TO CST

8/1/96

Mod 2 Basic CC Syntax Page 17

PRACTICE ACTIVITIES and QUESTIONS

1. The change tabl@FRIORTH.CCT)on the preceding page is used
for African languages to change digraphs and multi-stroke repre-
sentations of characters into single characterson codes.

Things to notice in this change table:

— the use of apostrophe and inch marks as delimiters
— the alignment of the entry components to aid readability
— the use of space or tabs separating the entry components
— the use of comments:

a. at the beginning of the table to state its name and

purpose
b. centered on lines to form headings (€.QIACRITICS)
following an entry to identify the resulting character
d. at the beginning of a line, preceding an entry, to make
that entry inoperative but still available for future use

o

2. In theAFRIORTH.CCTexample preceding, draw a circle around
the actual characters that will be searched for. (Do not include
delimiters.)

3. UsingAFRIORTH.CCT, what will the following sentence be
changed to in the output file?

\v 1 Net’a mat’a ap’i oko ut’'o i gamena nene,
'Omas’imini agepag’u gakot'o mina v’emo
nene hanuva minake, mino-loko iteko minam’o.

4. Write out the entry, with a descriptive comment, that you would
add toAFRIORTH.CCTto change the two-character sequeace
to a lower case ‘e’ with dieresis, or ‘€’, represented by the se-
guence<158>

8/1/96

Page 18

International Publishing Services PAD-CCP

5. Write a change table (complete with comments) that will make
the following Standard Format Markesrjv) changes:

change \b to \mt
change \sh to \s
change \x to \r

change \pp to \p

6. Locate thecC.EXEprogram on your hard disk. At thhes
prompt, type:disk cc.exe <ENTER> , Or use some other utility.
What is the complete path name where it is located?

7. LIST autoexec.bat . Is the path focc listed in thePATH com-
mand iINAUTOEXEC.BAT?

L] Yes [J No

8. Insert your student disk in drive and make that drive the de-
fault drive by typing the commard at theDos prompt. Create
a new subdirectory on your diskd \output . Runcc using
AFRIORTH.CCTas the change table amelMT.SFM as input. These
are on your student disk. Name the outputA#®T.0UT and
causecc to create it in the new “output” directory on your stu-
dent disk.

READING ASSIGNMENT

CC User’s Guide: 5-7 Using a Change Tabl8,Form of Changes,
13 comment

EXERCISES

1. With theA: drive as your default drive, make a subdirectory on
your student disk with your own namexd (name) . Now copy
and renam@FRIORTH.CCTfrom the root of your student disk to
MYAFRIOR.CCT in your directory on the disk by typing:

copy \afriorth.cct \(name)\myafrior.cct

Using your copy oMYAFRIOR.CCT, do the foIIowmg things:

a.

after the first comment line add a comment line stating:
Modified for PAD-CCP Mod 2 by (your name) — (date)

uncomment search entty (the hooked d) and change the
replacement to¢

add an entry to change the sequence space-hyphen-space to
<196>, including a comment labeling this an en-dash,;

8/1/96

Mod 2

Basic CC Syntax

d. list afmt.sfm and note the changes that will be made;

e. runcc using your modified table and input fl&MT.SFM,;

f. list your output file and check for changes—especially the
and<196>;

g. print your output, write your name on it, and hand it to your
trainer.

. Write a change table (first on paper and then key it into the com-

puter) containing the following:
a. comment lines identifying name of table, purpose of table,

date written, and author;
b. documented entries for the following changes:

\mt to @main title = (tag for main title)

\s to @sect hd = (tag for section head)
\c to @chpt = (tag for chapter num)
\p to @par = (tag for paragraph)

(for this exercise, do not include spaces aftestws in the
search strings, or after th€ in the replacements.)

runccC UsSingAFMT.SFM as input;

d. look at the input and output files to check changes;

e. print your change table, write your name on it, and give it to
your trainer.

o

8/1/96

Page 19

Page 20

International Publishing Services PAD-CCP

Mod 3 Setting the Stage Before You Begin

COMMANDS/TOPICS COVERED

search order nl caseless
search pointer begin
OBJECTIVES

At the end of this module, the student will be able to:

demonstrate an understanding of the sorted order of entries by identi-
fying correct output when given input and table entries;

describe to the trainer the basic operation of the search pointer.

write a table entry correctly usimggin andcaseless ;

demonstrate an understandingadeless by correctly filling in the
output that will result from given input and table entries.

INSTRUCTION

1. Input files, output files, and data buffers— As has already been men-

2.

tioned, input files which are read into the program are not
changed. An input file will remain intact, untouched, bycdhbero-
gram when the program is done. The end product of the program
will be a newly created output file, the contents of which are gener-
ated according to the instructions in the change table.

cc accomplishes this by reading the input file and making an identi-
cal copy of its contents in a data buffer within the computer mem-
ory. A data buffer is simply a place designated in computer memory
for retaining data, in this case, the characters read from the input file,
while a program is running.

All changes that are done to the input text will actually be taking
place in this bufferWhen all the changes are done, then the contents
of this data buffer are copied to an output file on the computer disk
for permanent storage. In this course, when we speak of input text or
output text, we will usually be referring to the characters within the
data buffer.

Search order and search pointer— While constructing a change table

that will yield desired results, it is helpful to understand the order in
which table entries are searched and how Consistent Changes makes
use of a seargbointer in the data stream. First, you should know
thatcc doesn’t search the input text for the search arguments in the
order that they are entered into the tabtesorts them by length

8/1/96

Mod 3

Setting the Stage Before You Begin Page 21

with the longest search entry first:

EXAMPLE
Table entries: Search order:
"t" > IIXII Ilthesell > Ilthosell
"the" > llall "the" > llall
Ilthesell > llthosell "t" > IIXII

Using the above table entries with the following input text:

these are times that try the student

you will obtain the following output text:

those are ximes xhax xry a sxudenx

andnot this text, which would result fromot sorting the entries:

xhese are ximes xhax xry xhe sxudenx

Now let’s look in greater detail at how this search is made in the in-
put text, or more specifically, in the data buffedata streamcc

uses a pointer to track its forward progress through the input text.
You might call it asearch pointer

The search pointer tracks the current place in the data stream where
all matches and changes take place. Unless otherwise instructed by
variouscc commands or unless a match occurs, the search pointer
moves through the data buffer one character at a time.

The search pointer divides the input text from the output text in the
data buffer. All characters to the right of the pointer are input text
characters, originally copied from the input text file. They have not
yet been compared to the search entries of the change table. All
characters to the left of the search pointer are output text characters,
already processed by the change table, and ultimately to be copied to
the output text file at the completion of the program.

When thecc program begins, the search pointer will be pointing in
front of the first character of the input text. The program will be
ready to compare the data found to the right of the pointer with each
search argument, starting with the longest search entry first, looking
for identical matches. Using the above table entries and input text as
an example, the following shows the initial data and pointer location:

8/1/96

Page 22

International Publishing Services PAD-CCP

these are the times...

search pointer

The input text is compared to the longest table entsye" . This

entry exactly matches the first five characters of the data stream and
is considered enatch When a match occurs, the entire matched
string is removed from the input text:

are the times...

search pointer

then the replacement stringose" is placed in the output, that is,
on the left side of the search pointer, becoming:

those are the times...

search pointer

In this course we will signify the output characters in the data stream
by an underline.

With the search pointer in its new position, the characters in the data
stream beginning with are...” (remember that each space is a
character too!) is once again compared to the sorted list of entries. It
is compared with the longest entyese” first, but it does not

match. The next longest enttyge” does not match, and neither

does the final entryt" .

When the characters following the search pointer will not match any
search entry, we say “there is no match,” and the data stream is han-
dled in a special way. At a “no match” the data stream is treated as
though exactly one character is matched and an identical character is
placed in the output. In our example, a space is removed from the in-
put and a space is placed in the output:

those are the times...
search pointer
And as the search continues the computer will:

— compare the data stream (beginning at the search pointer) with the
search entries, longest to shortest;

— remove the matched characters from the input;

8/1/96

Mod 3

Setting the Stage Before You Begin Page 23

— place the replacement string in the output (left of the pointer);

— when there is no match, remove one character from the input and
place it in the output.

Notice that the search pointer does not ptintharacters but
betweercharacters, and that text may be added to or deleted from
the data strearonly at the position of the search pointer.

3. nl (new line)— When searching for a phrase, it is important to re-

member all the forms it might take. Let’s consider phrases that
might have line breaks in the middle. AscCIi files, each line ends
in ahard return. Therefore,

EXAMPLE
"The Gospel According to St. John" > "replacement”
would match the input text:
The Gospel According to St. John
but would not match the input text:
The Gospel

According to
St. John

with a return at the end of each line.

To match on this input text, we must search for a return or new line
in those specific locations using the commandThe following
search would match the above input text:

EXAMPLE

"The Gospel" nl "According to" nl "St. John" >
"replacement"

The commandl can also be used to force a new line in the output
by using it in the replacement argument.

EXAMPLE
"The Gospel" nl "According to" nl "St. John" >

"The Gospel According to"
nl "St. John"

4. begin — If there are certain actions you want the Consistent

Changes program to do before any of the input file is read, this can

8/1/96

Page 24

International Publishing Services PAD-CCP

be indicated by theegin command. When used, it must be used by
itself as the search argument in tinst entry in the table.

begin > replacement argument

It will only be executed once. (It may be preceded by comments, but
it must be the first executable entry in the table.)

5. caseless — This command is used only on the replacement side of

abegin statement. It enables a single search string to match a string
in the data stream whose initial character might be either an upper or
lower case letter. Howeveaigseless works in a unigue way—so

don’t jump to conclusions! Here are some things you need to know
aboutcaseless

a. Incaseless mode,cc checks the case of the fisind only first)
character of the input text (i.e., the single character immediately
to the right of the search pointer). If it is an upper case letter, it is
changed to lower caseforethe input text is compared to the
search entries of the change table. Lower case and non-alphabetic
characters remain the same.

The second, third, etc., characters of the input string are not
altered. If the second character is upper case, it remains upper
case.

Since the first character of the input text will always be looked at
in its lower case form when usingaeless table, the first char-
acter of each search entry (if alphabetic) must likewise begin with
a lower case letter to be matched. Search entries beginning with
upper case letters witleverbe matched.

b. If the first character of the input was originally upper case and
changed to lower case before matching, then the first character of
the replacement string that is to be sent to the output will be
changed to upper case. If the first character of the output is non-
alphabetic or already upper case, it will be output as is.

EXAMPLE
Table entries:
begin > caseless clinel
"The" > " One" cline 2
"the" > "a" cline 3
"few" > " Some" cline 4
"(one" > "(this" cline 5

"HIS" > "YOUR" cline 6

8/1/96

Mod 3 Setting the Stage Before You Begin Page 25
When This
this is is the
found in resulting
Input: Output: Comments:
The A matches at line 3 (NOT 2!)

the a matches at line 3

Few Some matches at line 4

few Some matches at line 4 (notic¢eS")
(Ohe (One will NOT match at line 5!
HIS HIS will NOT match at line 6!

c. Even when a search or replacement string is broken in parts (e.g.
"the Gospel" nl "According to" nl "St. John"), only the
first character of thentire string is affected by theaseless
command.

d. A change table will not function partly in regular mode and partly
in caseless mode. It is eitheall caseless or none. In other
words, you cannot putseless in a replacement other than the
initial begin statement in order to suddenly change searching
modes.

VOCABULARY and CONCEPTS

hard return —the equivalent of pressing tRENTER>Or <RETURN>
key.

pointer—a “place keeper” in the data stream. Don’t be concerned
with howthe place is kept, but rather the concept of using a
pointer.

PRACTICE ACTIVITIES and QUESTIONS

1. You won't be familiar with most of the commands, bstr the
following change tables (found on your student disk) and notice
the ways in whichvegin , caseless , andnl are used.

a. 7CHAR.CCT—Noticebegin > caseless is the first execut-

able line of the table. Search for. See how it is used on the
replacement side two timesgroup(1) and on the search
side ingroup(4)

b. RESPEL.CC+Notice thatcaseless is not the first replace-
ment action fobegin , but it isoneof the replacement actions.
Notice the use ail on the search and the replacement sides
in group(1) andgroup(10)

8/1/96

Page 26

International Publishing Services PAD-CCP

READING ASSIGNMENT

CC User’s Guide: 9-100rder of Change4,2 begin,13 caseles21 nl

EXERCISES

1.

On a blank sheet of paper, write the table entry that is needed to
allow search entries and input text characters to match whether
the first character of the input is capitalized or not. Save this
paper for Exercise 2 and 3 below.

Table
entry

Carefully study the following table entries. For each entry, write

down (on the paper from Exercise 1) all input text strings (if any)
that can match the search string, and the corresponding output

string that will result from each input string.

Table Entries

begin > caseless
‘whosoever’ > 'whoever’ c entry A
‘verily’ > ‘truly’ c entry B
'LORD’ > 'God’ c entryC
"christ > ‘'Jesus’ c entryD
\sH '’ > \s’ c entry E
'gOSPEL’ > ’'goodnews’ c¢ entry F
All input strings (if any) that Resulting output string when
will match the search entry input string at left is matched
whosoever whoever
Whosoever Whoever

8/1/96

Mod 3 Setting the Stage Before You Begin

3. Given the following change table and line of input, write out the

expected output on the same sheet of paper used in Exercise 1
and 2, and turn it in to your trainer.

Table:

begin > caseless

ngn > e

Ilmanll > Ilpersonll

"manage” > "handle"
Input:

A man can manage a manager.
Output:

8/1/96

Page 27

Page 28

International Publishing Services PAD-CCP

Mod 4 Grouping Table Entries

COMMANDS/TOPICS COVERED

group incl excl
use

OBJECTIVES

At the end of this module, the student will be able to:

» draw a block diagram showing how control is passed from group to
group when given a change table containing three groups;

» modify and/or create a change table containing at least three groups
correctly usingyroup , use, andincl Oorexcl commands.

INSTRUCTION

1. Groups— Consistent Changes allows you to put table entries into

groups so you can control which entries are to be used under differ-
ent conditions. Each group is labeled with the comngang im-
mediately followed by a unique name or number within parentheses
identifying that group. This command is on a line by itself with no
wedge or replacement argument:

group(1)

Here’s some additional information you should know about groups:

— although names or numbers may be used to identify groups, num-
bers will make the groups easier to find in a large table;

— when numbers are used as the group labels, they need not be con-
secutive but should be in ascending order for readability;

— a group ends at the start of the next group or at the end of the
table;

— there is a limit of 127 groups.

2. Use— Groups can be made active by tke command. These

command is a replacement argument and is immediately followed
by the name or number of the group containing the search entries to
be used. The name or number identifying the group is in parentheses.

Whencc beginsgroup(1) will be active unless otherwise specified

8/1/96

Mod 4 Grouping Table Entries Page 29

EXAMPLE

c WDLSTRIP.CCT Mod 1 20-JUN-89 (modified)
C Strips WDL.EXE output of everything

c except the words.

group(l) c send text to output until next sfm
' > use(2) ¢ SFM found
nl’\' > use(2)

group(2) c identify sfm
id > "\id NIV 2 John words’ use(3)

'w’' > nluse(1) ¢ retain the word
'n" > use(3) c strip the count
T > use(3) c strip the reference
group(3) c strip unneeded elements
' > use(2) ¢ new SFM found
endfile > endfile
> omit

Fig. 3. WDLSTRIP.CCT Change Table

by ause command in theegin statement. I§roup(1) does not ex-
ist, then the group physically encountered first in the table will be ac-
tive.

Let’s discuss what is taking place in Figure 3.

By default,group(1) is the active group at the outset operates

as ifgroup(1) were the only group in the table. andnl v

are the only compares made of the input. When a backslash is found,
the replacement argument containing(2) is performed. Now

group(1) is no longer activesroup(2) search entries will be the

only ones compared against the text wttiis instructed otherwise

by another replacement argument. No@vsearches the input for
id,we o, orr

If 'ia0 is found in the input, a character string is sent to the output,
thengroup(3) becomes the active group.f’ is found, a new

line (nl) is sent to the output amebup(l) becomes active again. If
'n or’l" isfound,group3) becomes the active group.

What is all of this accomplishing? When you follow the flow of
logic through the table, you will find thag will cause a character
string to be sent to the outpwt, will cause the word following it

to go to the output, and or\I will cause the characters following
them not to go to the output (due to the null matchoand com-
mand ingroup(3) which we will discuss later). This means that the
output will consist of only the \id information and a list of words,
each starting on a new line.

8/1/96

Page 30

International Publishing Services PAD-CCP

EXAMPLE

Input Output

\id WDL \id NIV 2 John words
\n 00001 acknowledge
\w acknowledge Antichrist

\l 2JN 0:7 anyone

\n 00001 as

\w Antichrist

\l 2JN 0:7

\n 00003

\w anyone

\l 2JN 0:9,10,11

\n 00002

\w as

\I 2JN 0:6,7

Fig. 4. Sample Input and Output

Figure 4. is a sample of what the input might look like and the result-
ing output.

If you can understand how oac table can result in the output
shown from the above input, you may skip to point 3. below. If not,
let’s follow some of this input data through the change table.

Control starts witlyroup(1) so we are comparing for\a or

ni’' . We find thatt matches the first character in the input.

The replacement side of that entry passes contgabip(2) . (The
backslash that was matched was not replaced by the replacement ar-
gument, so it is not sent to the output.)

In group(2) we are comparing fol’ ,'w’ ,'n’ ,or’l" .The
next two input characters are and match the firgfroup(2) entry.
The replacement side sengsNIV 2 John words’ to the out-
put and then passes controbtoup(3)

Group(3) compares for the next backslash. If the next input charac-
ter is not a backslash, then the pointer is moved one character to the
right. (The commands used in the second and third lines of

group(3) , which cause the pointer to be moved, will be discussed in
a later module.) The next characters in the input consist of
<space>WDL<newline>\n<space>00001 ... Everything up to the

will be dropped, one character at a time—nothing will be sent to the
output.

When the backslash is encountered, nothing is sent to the output, but

8/1/96

Mod 4 Grouping Table Entries Page 31

!

group(1) — group(2) —or— group(3)

I W'

Fig. 5. Block Diagram

control is again passeddmup(2) to identify whichsFm follows.
SFMs ‘n’ or ‘I " result in control passing tpoup(3) to locate the next
backslash with still nothing going to output.

When aw is encountered, the backslash matchegoump(3) , con-
trol goes tayroup(2) , and thev matches. Then@ (new line) is
sent to output and control goesgtoup(1) . The biggest difference
betweenyroup(1) andgroup(3) is thatgroup(l) does not contain
an entry like the last entry gmoup(3) so input that is not matched
is passed to output.

The block diagram in Figure 5. is one more way of describing the
transfer of control from one group to another. There is one block rep-
resenting each group in the table. The arrows indicate the control
passing from group to group. The lines are labeled with the search
entry that must be matched for the transfer of control to take place.
For instance, when control isdmup(1) , a backslash must be
matched for control to passdmup(2) ;ingroup(2) , a match on

'w’ will pass control back tgroup(1)

If you need more help, ask your trainer to step you through the flow.
It is important that you understandw how the input data causes
the control to be passed from one group to another.

3. Other features about groups
a. multiple groups active—More than one group can be active at a
time. This can be accomplished by specifying more than one
group in ause command:

EXAMPLE

search argument > use(2,10)

Notice that the groups are contained within the same set of paren-
theses and are separated by commas with no spaces in between.

8/1/96

Page 32

International Publishing Services PAD-CCP

b. search order when using multiple groups—In Mod 3, we learned

that search entries were sorted into descending order of length be-
fore the compares began. When groups are used, the entries of
different groups are not sorted together. Entries are sorted within
each separate group. When multiple groups are active, the groups
are used in the order in which they are specified ingbecom-

mand.

In other words, the following table:

EXAMPLE
Group(1)
'search argument’ > use(10,2)
Group(2)
'c’ > ’'replacement’ c entry 1
ip’ > 'replacement’ ¢ entry 2
v > 'replacement’ ¢ entry 3
'q2’ > 'replacement’ ¢ entry 4
Group(10)
lo’ > ’replacement’ ¢ entry 1
o > 'replacement’ ¢ entry 2
"a" > 'replacement’ ¢ entry 3

would result in the following order of comparegreup(10) en-
tries 2, 1, 3; thepgroup(2) entries 2, 4, 1, and 3.

. beginning with groups other than the first group—The initially

active group can be changed from the first group to another
group (or groups) by specifying the group(s) intibgin state-
ment:

EXAMPLE

begin > use (1,10)

or
begin > use (2,5,66)

d. currently active groups list—Thee command should not be

thought of as a “go to” command. Processiogs noproceed

to the named group as soon asudee command is issued.
Rather, theise command merely updates a “currently active
groups list” whichcc will later consult when it is ready to begin
a search for another match.

When two or mor@se commands occur within a replacement,
the currently active groups list will be updated each tinee as
executed, but only thignal status of the currently active groups

8/1/96

Mod 4 Grouping Table Entries Page 33

list after the replacement is completely finished will determine
which group(s) will be active at the start of the next search.

4. Including and excluding groups

a. inct —Theincl command is similar to these command in that
it specifies one or more groups. However, rather than making
only the specified group(s) active (as in tse command), the
incl command tell€c to addthe specified group(s) to tlead
of the currently active groups list. This way you don’t have to
know exactly what groups are active—you just want a specific
one or more groups to be added to those that are active.

NOTE: A bug inCcC version7.4 causes a change table to malfunc-
tion when aralready-activegroup is specified in thecl com-
mand. It is, however, proper to do thisda version7.5 In the

newer version, specifying an already-active group inne
command will result in that group being removed from the active
groups list, and then placed at the end of the list, thereby making
that group to be searchkdt if other groups are active.

b. exct —theexcl command is the opposite of tihnel command.
It ensures that the specified group(s) is(are) not active.

EXAMPLE
group(1)
"string A" > use(2,10)
group(2)
"string B" > excl(10)
"string C" > incl(10)
"string D" > use(1)
group(10)

"string E" > "string X"

5. Insummary— To trace the steps that goes througleach timethe
input data is searched for a match:

— Check active groups listfor which groups (and order) will be
used for comparing search strings to the input data;

— Change to lower case the first characteafter the search
pointer, if the table is inaseless mode;

— Find an exact match testing strings from longest to shortest
within each group;

— Remove the matched stringn its entirety from the input;

— Do all replacement actionspecified by the match;

— Change to upper case the first characteof the replacement
if the first character of the match had been previously changed
to lower case.

8/1/96

Page 34

International Publishing Services

PRACTICE ACTIVITIES and QUESTIONS

1. By studyingCAPCHK.CCTin Figure 6., trace the flow from group
to group for the following input text sequences. Don’t be con-
cerned about the commands we haven't covered—just look at the

groups and entries withse..

Input Flow

\s God \ group(1) AY group(ZO)L. group(lO.)L group(20)
\id MAT \ group(1)
\c 1\ group(1)

Fig. 6. CAPCHK.CCT

C CAPCHK.CCT Mod 1 15-SEP-88
C (Modified for PAD-CCP Mod 4, May 1991, by K. Seitz)
C Locates sentence initial words not beginning with UC.

C You must modify store 1,2,3,5,&6 for your data!

C " " group 1&20 oo

store(1) '"ABCDEFGHIJLKMNOPQRSTUVWXYZ' endstore C UC
store(2) 'abcdefghijlkmnopgrstuvwxyz’ endstore C Ic

store(3) ™'/’ endstore C diacritics
store(4) '1234567890’ endstore C numbers
store(5) ' (<' nl endstore C sent init punct
store(6) ')>' nl endstore C sent final punct
use(1)

group(1)
v > use(20) C SFM found, check it out.
> next
7 > next
T > set(1) use(10) C Final punct found,

C next should be U.C.
endfile > clear(1) endfile

> clear(1) omit C Strip everything else

group(10) C 1st LETTER SHOULD BE UC

\ > use(20) C SFM was found

*f any(2) ¥ > " C Footnote

any(3) > C a diacritic

any(5) >" C opening punctuation

any(6) >" C closing punctuation

any(l) >" C an UC LETTER (modified for

any(2) >" C alc letter this example)

(continued on next page)

8/1/96

Mod 4 Grouping Table Entries

Fig. 6 CAPCHK.CCT continued

group(20) C PROCESS SFMs
id’ >\id’ store(50) '00’ endstore
store(60) '00’ endstore

use(25)
‘'mt’ > next C An UC lItr should follow these.
'st’ > next
pi’ > next
‘qm’ > next
P’ > next
T > next
'S’ > set(1) use(10) C Next letter should be UC
‘g2’ > next
q’ > next
m’ > use(1) C Next letter need not be UC
'c’ > store(50) use(50) C Store these num’s
'c’ > store(50) use(50) C for the messages
v >V’ back(1)
vV > store(60) use(60)
e’ > use(1)
group(25) C OUTPUT ID LINE
nl’\" > next
v > nl use(20)
group(50) C PROCESS & STORE CHAP NO

any(4) >dup

i > endstore append(50) '’
store(60) '00’ endstore use(1)

nl > endstore append(50) '’
store(60) '00’ endstore use(1)

group(60) C PROCESS & STORE VERSE NO
any(4) >dup
Y > next
nl > endstore if(1) use(10) endif

ifn(1) use(1) endif

2. Before each of the following replacement actions, assume that
groups 2 and 10 (in that order) are active. What groups will be ac-

tive following each replacement action, and in what order?
a. use(1,10)

b. excl(2) incl(1)

c. incl(2)

o

. incl(1,10) excl(2)

@

. use(10,1)

Is there any difference in search order between a. and e. above? Why?

8/1/96

Page 35

Page 36 International Publishing Services PAD-CCP

Fig. 7. 7CHAR.CCT

o 7CHAR.CCTMod 2 15-JUN-90
c (Modified for PAD-CCP, May 1991, by K. Seitz)
c Search for ??? for sections to modify.
o Deletes words less than 7 chars. from output of WDL
c Assumptions:
c 1 All refs have been deleted from the file being read.
c 2 " page headings" " " " " " "
C 3 " reference counts = " " " " "
c 4 An id line has been inserted in the file being read.
begin > caseless
store(Diac) ™ "™ C ???diacritics
store(Wd) " C stores the word
store(Chars) '0’ C counts characters
store(TotWds) '0’ C counts total words
store(DelWds) '0’ C counts deleted words (1-6)
store(RetWds) '0’ C counts retained words (7 +)
endstore
¢ HOUSEKEEPING
group(1)
Aid’ > dup use(4) c retain id line
\p’ > ifn(1) c keep first \p
nl\p’
endif
store(Chars) ¢ set char counter to 0
'0’ endstore
set(1) store(Wd)
use(2)
nl > next c create a \p at 1st word
Y > ifn(1) c create a \p at 1st word
nl\p ’ endif
store(Chars) c set char counter to O
'0’ endstore
set(1) store(Wd)
use(2)
endfile > do(Rep) ¢ EOF is read.
C/\/\I\/\/\/\AAA/\/\/\A/\/\/\A/\A/\/\/\A
¢ TEST THE LENGTH OF THIS WORD
group(2)
any(Diac) > dup ¢ don’t count diacritics
nl > next ¢ word is over;
i > endstore incr(TotWds) c word is over;
ifgt(Chars) "7’ c ??? if over 7,
out(Wd) incr(Retwds) C output it,
nl
else
incr(Delwds) c else forget it!
endif nl back(1) use(1)
" > fwd(1) incr(Chars) ¢ count this letter
endfile > endstore do(Rep)
(continued on next page)

8/1/96

Mod 4 Grouping Table Entries

Fig. 7. 7CHAR.CCT continued

C/\/\/\/\/\/\/\/\I\/\/\/\/\/\I\/\/\/\I\/\l\/\/\
¢ OUTPUTS THE\ID LINE

group(4)
nl > dup back(1) use(1)

C/\/\A/\/\/\AA/\/\/\/\AA/\/\/\/\/\A/\/\A

¢ OUTPUT THE FINAL REPORT
¢ TO THE FILE AND THE SCREEN.
define(Rep) >
nl out(TotWds) " total words"
nl out(DelWds) " deleted words (less than 7 chars)"
nl out(RetWds) " retained words (7 + chars)"
endfile
write nl
wrstore(TotWds) write " total words" nl
wrstore(DelWds)
write " deleted words (less than 7 chars)" nl
wrstore(RetWds) write " retained words (7 + chars)" nl

3. List FIXEM.CCT and look through it. Notice that the group num-
bers are non-consecutive but are in ascending order. Notice the
use of comments to document the purpose of each group as well

as other uses.

4. Figure 7. containBCHAR.CCT. See if you can draw (in the space
below) a block diagram of the flow from group to group, such as
that in Figure 5. Again, don’t be concerned about the commands
we haven’t covered. Only look at th@up anduse commands.

READING ASSIGNMENT

CC User's Guide: 16 excl,17 group,19incl, 21 name 25 use,38-40groups

8/1/96

Page 37

Page 38

International Publishing Services PAD-CCP

Fig. 8. REFIND.CCT

C REFIND.CCT Mod 1 8-SEP-88
C (Modified for PAD-CCP, May 1991, by K. Seitz)

C Extracts all cross references.

begin > use(1)

g rou p (1) C NANN F I N D S S F M S NNNNNNNNNNNNNNNNNNNNNNNNNNN

group(2) C "™ FIND ID LINES and CROSS REFERENCES "~
'id > nl \id * use(3)

group(3) C "~ DUP ID LINES and CROSS REFERENCES A

endfile > endfile

endfile > endfile

> use(2) C SFM found!

> omit

r >nl\r’ use(3)

> omit use(1)

nl’\ > next
v > nl '\’ back(2) use(1)
EXERCISES

1. On a separate sheet of paper to be handed in, draw a block dia-
gram ofREFIND.cCTshown in Figure 8.

2. Look atwDLSTRIP.CCT(in Fig. 3. and on student disk).

a. First on paper, then on the computer, modify this file to
change every ‘a’ to an ‘X’ in the words. Words are marked by
\w. These are identified by matching ingroup(2) . Put
the orthography change (‘a’ to ‘x’) iroup(10)

b. Runcc using your table and input fi&rUDENT.WDL

c. After successfully completingc with the desired results,
print out your table, put your name on it and hand it in.

3. You have an input filssomT.SFM)which must be changed be-
fore it can be run through our preprocessing. It contains the fol-
lowing sFMs: \b, \c, \id, \p, \s, \s2, and \v.

a. Write a table to accomplish the following:
— Change ‘\b’ to ‘\mt’, and retain all otherFwms
— In elements marked with \p, \s2, and \v, chariged /',
change ‘-u’to *_u’, change ‘="to *-’, and change “to *:"’
(Hint: You should be able to do this using two groups. The only
replacement actions needed are character strings and group

8/1/96

Mod 4 Grouping Table Entries Page 39

related commands.)

b. Runcc using your table and input fieOMT.SFM

c. After successfully completingc with the desired results,
print out your table, put your name on it and hand it in.

8/1/96

Page 40 International Publishing Services PAD-CCP

Mod 5 Using Storage Areas

COMMANDS/TOPICS COVERED

store any
endstore command line running of CC
OBJECTIVES

At the end of this module, the student will be able to:

* modify and/or write a change table, correctly usimng, endstore
andstore commands;

* runcc, entering all file information needed on one line attbs
prompt.

INSTRUCTION

1. Storage Areas— In Mod 1, you were told thatC produces one out-
put file. This is true. However, you may also create sam@orary
output areas callestorage areas in computer memory. This is done
with astore command which is immediately followed by an identi-
fying name or number. Thgore command is used only on the re-
placement side:

EXAMPLE

"search argument" > store(name)

Thestore command redirects all output from this point on until it is
stopped with arndstore command. After atore command is in-
voked,all output—whether from the input file or from a character
string in the replacement side of the change table—will go to the
storage area indicated andtto the output file. It's like switching a
train from one track to another.

Let's look at some examples:

EXAMPLE 1
begin > store(vowels) 'aeiou’ endstore

EXAMPLE 2
group(1)

"\s" > store(sect) use(2)
group(2)

"\" > endstore "\" use(1)

8/1/96

Mod 5

Using Storage Areas

EXAMPLE 3

group(1)
"\" > endstore use(2)

group(2)

"c" > store(chpt) use(1)

"s" > store(sect) use(1)

"r' > store(xref) use(1)
In the first example, a storage area called ‘vowels’ was opened as
part of the replacement side of thegin command. The character
string ‘aeiou’ following thestore command would be placed into
the output. But where is output being directed now?sidie com-
mand has directed output to the storage area called ‘vowels’ instead
of the output file. So the string ‘aeiou’ will be placed in the storage
area ‘vowels’.

The commandndstore stops any further output from going to the
storage area ‘vowels’ and will send it instead to the output file. This
leaves storage area ‘vowels’ containing ‘aeiou’. We'll discuss how
this can be used in a moment.

In the second example, whens is encountered in the input file,

a storage area called ‘sect’ is opened and ghen(2) is made the
active group. All output is now being directed to storage area ‘sect’.
This means that all input text up to the next backslash will go into
storage area ‘sect’ rather than to the output file.

When the next backslash is encountered in the input, thendhe
store Will stop further output from going into the storage area but
will send it to the output file.

The third example is like the second except that orlereéstorage
areas may be opened depending on the input. Input text following a
‘\c’ will go into storage area ‘chpt’ until the next backslash. Input
text following a ‘\s’ will go into storage area ‘sect’ up to the next ‘\’;
and input text following a ‘\r’ will go into storage area ‘xref’.

Here are some additional facts about storage areas:

— output can only go toneplace—either the output file or one stor-
age area;

— astore command terminates any previattse command

which has not been terminated witheadstore , as shown in the
following example:

8/1/96

Page 41

Page 42 International Publishing Services PAD-CCP

begin > store(vowels) 'aeiou’
store(consonants) 'bcdfghjklmnpgrstvwxyz’
endstore

(Storing into ‘vowels’ is terminated lyyore(consonants))

— astore commandlearsthe named storage area of any previous
contents. Consider the following:

store(book,chpt,verse) endstore

The effect of the above line would be to clear out the storage
areas named ‘book’, ‘chpt’, and ‘verse’. (These commands, with
the three storage names in sequence, are equivalent to saying
store(book) store(chpt) store(verse) endstore)

— the storage area name can be any length and may contain alpha-
betic characters, numbers, or symhuailser than spaces, commas,
or right parentheses

— storage area names are case sensstive((f) andstore(\F)
would refer to two different storage areas);

— a storage area can hold any amount of data, dependent only on the
amount of computer memory available;

— thecc program has a limit of 127 storage areas.

2. any(name) — There are a number of uses for storage areas. One of
them is in conjunction with the commaad, followed by the name
of a storage area. Thay command is used on the search side of a
change entry. Each of the characters in the named storage area will
be checked for a match in the input. Interpret it as meaning: if the
nextsingleinput character matchasy single character in the
named storage area, you have a match!

EXAMPLE — CV.CCT
begin > store(vowels) "aeiouAEIOU"
store(consonants) "bcdfghjkimnpgrstvwxyz"
"BCDFGHIJKLMNPQRSTVWXYZ"
endstore
any(vowels) > W
any(consonants) > "c"

This table will change the input text into v’'s and ¢’s showing vowel
and consonant patterns. Input text will be matarezicharacter at
a time.Each alphabetic character will be changed to a ‘v’ or ‘c’ and

8/1/96

Mod 5

Using Storage Areas

each non-alphanumeric character such as spaces or punctuation will
be passed to the output file unchanged.

Theany command can also be used as a part of a longer search argu-
ment:

EXAMPLE
begin > store(space) " " nl endstore
"Jesus" any(space) "Christ" > "Jesucristo"

In the above example, input text will now match whether the words
‘Jesus’ and ‘Christ’ are separated by a space or a new line.

The storage area name can also be repeated to indicate two or more
successive characters are required to match:

EXAMPLE
begin > store(space) " " nl endstore
any(space,space) > "

Any combination of a new line or space followed by a new line or
space would match the above search argument and be replaced by a
single space.

3. Command line running of CC— Up to now you have ruac by keying

ccand pressingeENTER>and then answering the prompt for the file
names. There is another way to am All of the information can be
provided on one line at tlmos prompt. Following is the syntax to
use.

C:\> cCcC-t changetable name outputname input name

There are two ways this can be beneficial. First, only the most sim-
ple cc tables yield the desired results the first time. Duringlthe
buggingof a change table (and, therefore, multiple executions of
CCO), it is convenient to be able to bring back the last command en-
tered (with all the information needed) by pressirgr at theDOS
prompt (or the<upP> arrow if you are usin@DOSEDIT). This saves a

lot of rekeying.

Secondly, this one-line format for runniog can be used from
within a batch file for more automated processing.

Instead of a single input fileC will accept a file containing last of

files as input tacc by preceding the file name with. All of the out-
put will go intooneoutput file:

C:\> cc-t changetable name output namei input list

8/1/96

Page 43

Page 44 International Publishing Services PAD-CCP

VOCABULARY and CONCEPTS

storage area—a temporary holding place for data in computer mem-
ory during the running afC. When the program ends, informa-
tion in storage areas is no longer available.

PRACTICE ACTIVITIES and QUESTIONS

1. Below are threeegin entries with replacement actions. Which
(if any) will accomplish the same thing?

a. b.
begin > store(1) nl begin > store(1,2,3) nl nl ni
store(2) nl endstore
store(3) nl
endstore c.
begin > store(1,2,3) nl

endstore

2. Included on your student diskd®NVOW.CCT. It is a more so-
phisticated version of thev table used in the example in this
module. ReviewcONVOW.CCTF—read the comments, think of
how it would be modified for different job data, look at the
grouped entries. You won't know all the commands, but you
should understand some of them.

3. Runcc, providing all the file information on one line at thes
prompt. UseCONVOW.CCTjust as it is and any text file for input.

READING ASSIGNMENT

CC User’s Guide: 11 any,16 endstore21 name 24 store,28-29Running CC
from Command Line30 store & endstore31-36 An Example of Storage

EXERCISE

1. Modify cv.ccT (the example used in this module—there’s a copy
on your student disk) so that it will also change any number (0-9)
to an ‘n’. Using any input file, ruac with a one-line entry at the
DOS prompt. (If you must alter your table and reag) remem-
ber to use theuP>arrow or<rF3>to recall the line.) When fin-
ished, print out your table and turn it in.

2. EMCHEK.cCT (Fig. 9.—and on your disk) has been written using

numbers for names of storage areas. Firstcauwith this table
as is, UsingMLK.SFM on your disk as input. Then modify the

8/1/96

Mod 5 Using Storage Areas

table to use descriptive words for storage area names. Berun

giving your output a different name. Compare your outputs. They
should compare equal. When finished, print out your modified ta-

ble and turn it in. (Note: arguments of e command, as will
be learned later, are storage area names.)

3. Write a table to change all occurrences of ‘Book of Acts’,
whether the words are separated by a space or a new line, to
‘Acts of the Apostles’ with spaces between each word.&un
USINgBOOKACTS.TXT as input, print your table, and turn it in.

Fig. 9. EMCHEK.CCT

C EMCHEK.CCT Mod 1 13-MAR-84
C Modified for PAD-CCP Mod 5, May 1991, by K. Seitz
C finds sequences of \m followed by no text

begin > store(1) '00’ endstore
store(2) '00’ endstore
store(3) '1234567890’ endstore
store(4) ’ ' nl endstore
clear(1) use(1)

group(1)
Aid’ > nl"\id’ use(2)
¢’ > next
\c¢’ > store(2) '00’ endstore C clear verse number
store(1) use(4)
\v’ > next
\v’ > store(2) use(5)
\m’ > next

\m’ nl > use(3)
endfile > ifn(1) 'no \m errors’ nl endif endfile

> omit
group(2) C Complete id line
Ay > nl'\ back(1) use(1)
group(3) C Check for \pgrs
i\ > dup back(2) use(1)
Ay > set(1) \m error in’ out(1) out(2) nl
'\ back(1) use(1)
any(4) >
" > omit use(1)
group(4) C Complete ch no
any(3) > dup
any(4) > "’ endstore use(1)
group(5) C Complete vs no
any(3) > dup
any(4) > next

> endstore use(1)

8/1/96

Page 46

International Publishing Services PAD-CCP

Mod 6 Matches Conditioned by Environment

COMMANDS/TOPICS COVERED

prec wd

fol

display/debugging option

OBJECTIVES

At the end of this module, the student will be able to:

demonstrate an understanding of matctedg versus matcheenvi-
ronmentby correctly providing the output resulting from given table
entries and input text;

modify and/or write change tables correctly using, prec , fol ,

andwd commands;

run cc in display/debugging mode and provide answers to questions
concerning the displayed information.

INSTRUCTION

1. Precede, Follow, and Word Commands— These commands are similar

to theany command in that they also reference a storage area which
must have been previously loaded with characters. Also likanthe
command, these commands are used on the ‘search’ side, and each
occurrence of the commands representargof the characters in

the storage area. But unlike ¢ command, these commands do

not actually constitute part of the match but are considered ‘environ-
mental’ commands. Let’s look at each:

a. Precedeor prec(name) —This command is used along side the
character string that is being searched for. For the search string to
be considered a match, not only must the search string match the
input text starting at the search pointer, but the single character in
the data streamprecedingthe matched characters (i.e., the first
character left of the search pointer) must also be contained in the
named storage area.

EXAMPLE
begin > caseless
store(condition) "aeiou” endstore

"ft" prec(condition) > "th"

Any ‘ft’ in the input text which is preceded by a vowel will be
changed to a ‘th’. Notice that, even though the condition we are

8/1/96

Mod 6

Matches Conditioned by Environment Page 47

specifying must occuseforethe character string, the command
prec(name) can be placed either before the character string, or
between the character string and the wedge.

. Follow orfol(name) —This command works the same way as

prec(name) except that the input string matching the search
string must béollowedby a character contained in the named
storage area. THel command must be placed between the char-
acter string and the wedge.

EXAMPLE
begin > caseless
store(endings) " " nl ., 21" "
endstore
"ing" fol(endings) > tin

The storage area ‘endings’ is loaded with the characters which
would indicate the end of a word. Any word ending in ‘ing’ will
be changed to end in “in’ .

C. Word orwd(name) —AS you have probably guessed, #tecom-

mand combineprec andfol . To be considered a match, the in-

put text must match the search character string, and the character
precedingandthe character following the string must be among
those contained in the named storage areawdltemmand

must be placed between the character string and the wedge.

EXAMPLE

begin > caseless
store(boundaries)
I 1| I
endstore

"the" wd(boundaries) > "a"

Every occurrence of the word ‘the’ would be changed to the
article ‘a’; the characters ‘the’ when a part of a larger word
(i.e.,them, brethe, faher) would not be changed.

2. Differences betweemny andprec ,fol ,wd— There are a number of

differences betweesny and these other commands:

Any(name) can be used by itself as the search argument; whereas
prec(name) , follname) Orwd(name) must always be used in con-
junction with a search argument.

EXAMPLE
any(space) > nl
"the" prec(space) > nl "the"

8/1/96

Page 48

International Publishing Services PAD-CCP

Any(name) is placed within the search argument at the location
representing the actual character of input text it is to match;
prec(name) , fol(name) andwd(name) must always be placed be-
tween the matched sequence and the wadge €an also be placed
before the matched sequence instead).

EXAMPLE
"big" wd(space) > ‘"large"
"big" any(space) "bad" > "big bad"

The input character matching the/(name) command is a part of

the matched string and will be affected by the replacement argu-
ment. But input characters represented bytb&name)

fol(name) orwd(name) commands arBOT considered to be a part

of the matched string. These preceding and/or following characters
only set theenvironment surrounding match—they araotin-

cluded in the match itself. Therefore, these characters will not be af-
fected by the replacement argument.

This difference is important enough to warrant a closer look.

EXAMPLE 1
begin > store(space) " " nl
endstore
any(space) "Jesus" any(space) > "*Jesus*"

EXAMPLE 2
begin > store(space) " " nl

endstore
"Jesus" wd(space) > = "*Jesus*"

Input text:The Bible says that Jesus is the way, the
truth, and the life.

To satisfy the search argument contairdng in example 1, the
search pointer must be positioned as follows; the matched string is
circled:

The Bible says that Jesu, the truth, and

the life.

search pointer

The spaces before and after ‘Jesus’ant of the match. The output
file will read:

The Bible says that*Jesus*is the way, the truth, and
the life.

To satisfy the search argument containiagn example 2, the

8/1/96

Mod 6

Matches Conditioned by Environment

search pointer must be positioned as follows; the matched string is
circled:

The Bible says that Jesus is the way, the truth, and
the life.

search pointer

The spaces before and after ‘Jesusmargart of the match. The
output file will read:

The Bible says that *Jesus* is the way, the truth, and
the life.

3. Display or debugging option/d) — AS you can see, a Consistent

Changes table can easily become rather complex and tricky. Some-
times it's difficult to tell just what entries are being matched, what
changes are being made, or what route or path is being followed
through the table. Maybe all you know for sure is that you aren’t get-
ting the desired results!

For this reason, the program contains a feature that will let you see
on the screen some of the actions which are taking place as the pro-
gram is running. This is thdisplayor debuggingoption. It works

best whemNsI.sYSis installed (consult BOS knowledgeable per-

son about this). The display option is activated by addirafter

the name of thehange tabldefore you pressENTER3 or by using

the following command at theos prompt:

C:\> CC -t change table nanfet-o output name input name

The program will list on the screen the names of all storage areas,
switches*, groups, and defines* in the table (and a number which

CC has assigned to each of them). Each name is listed on a separate
line. If your table has many, you may need to pt€IRL/S>or

<PAUSE:{0 stop them from scrolling off the screen if you want to see
them.

The display will stop at the first match that is made. For each match,
the display will show:

— the name and contents of any storage area being stored into,

— one line showing 35 characters of the output and 35 characters of
the input—with the matched string in reverse video,

* These features are covered later in the course.

8/1/96

Page 49

Page 50

International Publishing Services PAD-CCP

— another line showing the same text after the replacement side has
been performed,

— alisting of all the groups that are active and all the switches that
are set,

— the name and contents of the currently open storage area (if any)
after the match has been completed.

The display will show this same information for each match that is
made. Initially, the display will stop at each match until you press
any key to continue. But at any stop you may ptesE>(escape)

and it will continue to process matches and scroll the display infor-
mation on the screen. Pressing any key will again put the action into
stopping at each match. PressuagRL/C>will terminate theccC pro-
gram if desired.

For a visual feature such as this, you will understand it best by using
it. Some of the practice activities have been designed to familiarize
you with the operation of the display option.

VOCABULARY and CONCEPTS

<CTRL/S>—pressing theCTRL> key and the ‘s’ key at the same
time will stop the information on the screen from scrolling off.
Pressing any key will cause the scrolling to resume.

PRACTICE ACTIVITIES and QUESTIONS

1. Using the following change table for each inpytdraw the loca-
tion of the search pointer at the time of a matghircle the
matched string, ang) write the final output text.

CHANGE TABLE

begin > store(space) " " nl
store(bound) " " nl "2, ;" "
endstore

"do" any(space) "not" > "don't"

"already" wd(bound) > "all ready”

"semi” prec(bound) > "bi"

any(bound) "couldn’t" any(bound) > "could not"
"wouldn’t" wd(bound) > "would not"

8/1/96

Mod 6 Matches Conditioned by Environment Page 51

INPUT TEXT OUTPUT TEXT

a. |donotcare.
search pointer

b. Iam already.
search pointer

C. The semiannual news...

search pointer
d. He couldn’t go.
search pointer

€. He wouldn't go.

search pointer

N

. Write in the appropriate entries to accomplish the following
(including any necessabggin entry):
— change every ‘(' followed by a number to T,
— change every ‘)’ preceded by a number to a ‘.

3. Write in the appropriate entries to accomplish the following (in-

cluding any necessabggin entry):

— for every ‘) followed by a letter or number, output *)***" in
place of the ‘),

— for every ‘(’ preceded by a letter or number, output “***(’ in
place of the ‘(,

— for every ‘(' followed by any type of spaae,, or closing
punctuation, output ‘(***’ in place of the ‘(.

8/1/96

Page 52 International Publishing Services PAD-CCP

4, List RESPEL.CCT and look at the uses aiy andfol In
groups(40) through (49).

5. Runccin display mode usingeSPEL.CCTas the change table
andRESPEL.TXTas the input. Be ready to pressrRL/S>o0r
<PAUSE>immediatelyafter entering the change table name fol-
lowed by /d. (If you weren’t fast enough, userrL/C>to abort
the program and try again.) Answer the following questions:
a. How many stores are there?
b. What is the maximum number of changes allowed?

c. List the first five group sets that become active.

d. When an entry containirigg is matched, is the character sat-

isfying fol (as in El'ia fol(endword)) highlighted?_
e. Is the character satisfyiagy (as in Eja any(sp) cumu)
highlighted?

READING ASSIGNMENT

CC User’s Guide: 17 fol, 23 prec,25wd, 27 Debug

EXERCISES

1. Combine the table entries you wrote for Practice Activities 2 and
3 into one table. Ruac in display mode using this table and in-
put file PAREN.TXT. Check your results. When finished, print
your table and turn it in.

2. Modify RESPEL.cCTto make the following additions:
(HINT: read carefully the comments precedimgup(40) & (70) .)

a. change ‘yyy’ to ‘zzz’ when it occurs at the end of a word;

b. change ‘xx’ to ‘hx’ when it occurs at the beginning of a word;

c. change the word ‘text’ to ‘test’;

d. There is already an entry fpruga" any(sp) "ni"
Add a similar entry that will match on the same string except
that it will also find any ‘endword’ punctuation between
‘p-uga’ and the space. Don't alter the replacement.

Runcc usingRESPEL.TXTas input; check your results; print your
table and hand it in.

8/1/96

Mod 6 Matches Conditioned by Environment Page 53

8/1/96

Page 54

International Publishing Services PAD-CCP

Mod 7 Getting it Out of Storage

COMMANDS/TOPICS COVERED

out outs append

OBJECTIVES

At the end of this module, the student will be able to:

* demonstrate an understandingaygdend , out , andouts by identify-
ing the correct output from specific table entries and input text;
» modify and/or write tables correctly usiagpend , out , andouts .

INSTRUCTION

1. Outputting storage area contents— So far we have discussed how to
direct output text to a storage area, and some ways to compare input
text to the contents of a storage area. Now we’ll show you how to
direct the contents of a storage area to the output file or to another
storage area.

a. out(name) —Theout command will cause the contents of the
named storage area to be placed into the output file. Itrides
clear the storage area, but leaves the contents unchanged. You
might think of it as putting a copy of the storage area contents
into the output file. Theut commandstopsany current storing
and switches the output flow to the output file. Since it is an ac-
tion to be taken, it is used on the replacement side.

Let's consider what is needed to handle text where dropped chap-
ter numbers are embedded within the first two lines of the para-
graph. Here the chapter must follow any section head which

might precede that paragraph. This would require changing the se-
guence of chapter numbers and section heads, as illustrated in the
following example:

EXAMPLE (Place chapter numbers AFTER section heads for dropped chapter numbers)

group(1)
"\c " > store(chpt) "\c " use(2) c store chpt;chk next

group(2)
"\s " > endstore "\s " use(3) C output sect. first.
"\" > out(chpt) "\" use(1) ¢ chpt not followed by
¢ sect—output chpt
group(3)
"“\" > out(chpt) "\" use(1) C put chpt after sect.

8/1/96

Mod 7

Getting it Out of Storage Page 55

In this example, a storage area hamed ‘chpt’ is opened each time
a ‘\c ’is encountered in the input text. A ‘\c '’ is output to the
storage area angloup(2) becomes active. All text following the
SFM (a chapter number and new line) up to the next backslash
also goes to the storage area.

If the next text element is a section head ‘\s ’, #eRtore

sends all subsequent output to the output file. A \s ' is output,
andgroup(3) becomes active. There the rest of the section head
Is output until the end is found at the next ‘\'. Tharchpt)

copies the chapter element stored in ‘chpt’ to the output file, and
searching continues tioup(1) for \c .

If the text element following the chapter number is not a section
head (\s),then the input text will match on the single backslash in
group(2) . At this pointout(chpt) ends storage and copies the
‘chpt’ contents (‘\c ’, a chapter number, and new line) to the out-
put file, keeping the original order as in the input text. Searching
continues irgroup(1) for \c .

. outs(name) —This command is identical to tlhet command

except that it doesot stop any storing which is currently taking
place. In other words, it does not switch the flow of the output.
One of the important aspects of this is that it allows you to move
data from one storage area to another.

EXAMPLE (Set up ending and beginning chapter number storage areas)
group(1)
"\c " > store(oldchp) outs(newchp) store(newchp)
“\" " > endstore
"@hdr endchp =" out(oldchp)
"@hdr newchp =" out(newchp)

When a new chapter number is encountered (\c), the character
string stored in the current chapter storage area (newchp) is
transferred to the old chapter storage area (oldchp). This transfer
IS a two-step process: first, there(oldchp) command

switches the output flow to the ‘oldchp’ storage area; then the
outs(newchp) command copies the ‘newchp’ storage contents
into the output flow, putting it into ‘oldchp’.

If the store(oldchp) command had not been given, the
outs(newchp) command would have sent the ‘newchp’ storage
contents to the output file. Note thabit had been used instead
of outs , it would not have made any difference whether the
store(oldchp) command was there or not becaose would
have terminated theore before outputting anything. So the

8/1/96

Page 56 International Publishing Services PAD-CCP

‘newchp’ contents would have gone to the output file.

In the example as it is written, what terminates the
store(oldchp) command? (Answestore(newchp))

2. Adding on to storage withappend(name) — Theappend(name) com-
mand is quite like thetore(name) command except that it doest
clear out the storage area. It can be usedidonore text to the con-
tents of a storage area.

The following example is an abbreviated change table to be run on
Scripture text. ExpectesFnms in the input include \id (followed by a
three-character book name and possibly other information), \c, \s, \p,
and \v. Any othesFM will be considered an error. The output will

be all of the input text plus error messages for unexpsetes—

giving the book, chapter, and verse where it was found. This exam-
ple shows a use of tl@pend command as well as additional uses

of out :

EXAMPLE (to reference error messages)

group(1)

"\id " > "\id " store(book) use(2) c begin book store

"\c" >"\c" store(chpt) use(3) c begin chpt store

s" >"s" ¢ protect known SFM

"“\p" nl >"\p" nl ¢ protect known SFM

"W " >"\v" store(verse) use(4) c begin verse store

"\" > "**ynknown SFM found at " ¢ output error msg
out(book,chpt,verse) ¢ for unknown SFMs
R] " ¢ with reference

group(2) ¢ find end of \id book name
""" >""endstore ¢ output book name
out(book) use(1)

group(3) c find end of chapter number
nl > endstore

out(chpt) nl C output chapter #
append(chpt) ":" endstore c¢ add colon to chpt
use(1) c for error msg

group(4) ¢ find end of verse number
> endstore out(verse) " " ¢ output verse #
use(1)

Your practice activities will make use of this example to help you un-
derstand it better.

8/1/96

Mod 7 Getting it Out of Storage Page 57

PRACTICE ACTIVITIES and QUESTIONS

1. Using the preceding example, explain what will happen when
‘\g’ is encountered in the following input text:

INPUT
\id MAT Example

\cl

\s The Genealogy of Jesus

\p

\v 1 A record of the genealogy of Jesus Christ, the son
of David, the son of Abraham:

\q

\v 2 Abraham was the father of Isaac, ...

Write out below what the output would be for this segment of text.

2. Runcc using tablevob7PRAC.CCT(a disk copy of the above ex-
ample) withMmOD7PRAC.SFMas input, and check the output
against your answer for 1. above. (If it is different, try running it
in display mode and stepping through it.)

3. \q' is a legitimatesFM; write in below the entry needed to treat it
the same as a ‘\p'.

READING ASSIGNMENT

CC User's Guide: 11 append22 out & outs,30 append31 out & outs

EXERCISES

1. Fig. 10 below shows the part of a table which prepares verse num-
bers for Ventura. What will be the output for the following texts
(write your answers on the paper for Exercise 2):

8/1/96

Page 58

INPUT
\v 2 <space>

\v 3-5 <space>

\v 6a

\v 6b-7 <space>

\v 10,11 <space>

\v 42

International Publishing Services PAD-CCP

OUTPUT

<space>

<space>

2. We want to know the sequence of /s in an input file. Write
a table that will do the following:

a.
b.
C.

output all of the id line (from \id to the next\);

at \e, output ‘End of Book ’;

at \c, \mt, \m, \p, \q, \r, and \s, accumulate in a storage area the
SFM (without the backslash) that was found, followed by a hy-
phen (e.g., mt-c-s-r-p-...). These should continue to add on un-
til step d. below;

. at \v, output the stored sequencs, @and clear the store;
. strip all other text. (This requires a couple commands we ha-

ven't covered, so group(1) is provided for you below.)

group(1)

\' >use(2) cfinds start of SFM

endfile > endfile c terminate program at end
>omit ¢ strips all else

Runccusing this table andbJN.sFMmfor input. Print your
table and hand it in.

Fig. 10. Verse Number Attributes for Ventura

begin > store(NBHy) " " ¢ Underline; NoBreakHyphen

é'roup(l)

,\V ’

group(3)

any(sp) > endstore

store(VP) "9" ¢ Verse Point Size
store(VJ) "250" ¢ Verse baseline Jump
store(sp) " " nl ¢ Space characters
endstore

> store(VsNum)
use(3)

> append(VsNum) outs(NBHYy)
'<BP’ out(VP)

'Y out(VJ) >’
out(VsNum) '<PDJO>" use(1)

8/1/96

Mod 7 Getting it Out of Storage Page 59

8/1/96

Page 60 International Publishing Services PAD-CCP

Mod 8 Moving Text On Through

COMMANDS/TOPICS COVERED

dup endfile null
next omit
OBJECTIVES

At the end of this module, the student will be able to:

» demonstrate an understanding of the use of nulls by identifying right
and wrong table entries;

» modify and/or write tables correctly usiagp, next , nulls, ancmit ;

* write a statement in his own words on how to avoid getting into a
loop with a null search.

INSTRUCTION

1. Duplicating the matched string into the output withdup— Up to now, if
we wanted matched text to be sent to output we accomplished this
by repeating the matched character string on the replacement side of
an entry. But there is an easier way.

When input text matches a search argument, not only is it removed
from the input text, but it is also copied to a “match buffer.” Every
time you uselup within that replacement argument, a copy of the
match buffer is sent to the output. As implied, this command is used
only on the replacement side.

EXAMPLE 1

group(1)

"\c" > dup use(2)

Example 2

begin > store(space) " " nl
endstore

"Jesus" any(space) "Christ" > store(text) dup
endstore

In the first example, matching on ‘\c’ is used to trigger a change in
active groups. The matched string (\c) is sent unchanged to the out-
put file with dup.

In the second example, because of the uaeygfthe exact match-

ing text is unknown. There could be a space or a new line between
the words. In order to send it to output unchangegl,is essential.

8/1/96

Mod 8

Moving Text On Through Page 61

Notice that in the replacement argument in this example a storage
area is first opened, and then the matched string is copied into it
from the match buffer using thiep command.

Remember in using the commanus: , fol , orwd that the charac-

ters required by these commands are not a part of the matched string
and thereforeannotbe placed into the output using they com-

mand.

EXAMPLE

begin > store(wdbound) " " nl".,;"*1?"
endstore

"Jesus" wd(wdbound) > dup

Only the word ‘Jesus’ will be sent to output, arad the character on
either side of it.

2. A simple shortcut usingnext — Sometimes you may have a number of

consecutive search entries which all havestrmaereplacement argu-
ment. Rather than entering the same replacement side for each line,
thenext command may be used for the replacement side for all but
the last one. Remember, they must be consecutive and the replace-
ment argument identical.

EXAMPLE

begin > store(sp) " " nl endstore
any(sp,sp,sp) > next

any(sp,sp) > next

any(sp) > nl "The next word is:"

Whether 1, 2, or 3 spaces are encountered, the replacement will be a
‘new line’ and the message ‘The next word is:’.

Recognizing the end of file wittendfile — It is often useful to detect
the end of the input text. This is done by usingetiugle com-
mand on the search side of an entry to match on the ‘end of file’.
Two principle reasons for using thedfile = command are:

a. performing finishing up tasks at the end of input files, such as
report summaries or outputting the remainder of a record, and

b. preventing infinite loops where null matches are used, as de-
scribed later in this module.

The replacement argument may contain actions to take before the
program stops, including outputting messages or doing other finish-
ing tasks. The replacement side must either contaénddire to

output an ‘end of file’ or ase command that will transfer control to

8/1/96

Page 62

International Publishing Services PAD-CCP

another group where andfile will be output. The program will
not end after matching amdfile until anendfile is output.

The simplest usage would be:

endfile > (actions if neededndfile

On rare occasions it may not be necessary to process all of an input
file. In such casesndfile can be used as a replacement argument
to end the prograrneforethe end of file is reached on the input file.

4. Bypassing or dropping text withomit — There are times when it is nec-

essary to eliminate a certain number of input characters from the
data stream without being processed. dthe command removes
characters from the input immediately to the right of the search
pointer and discards them. They will not be available for matching at
a later time.

Theomit command is followed by a number in parentheses, specify-
ing the number of characters to be omitted. When is used with-

out such a parenthesized number, the nurobeis the default. This
command is usednly in the replacement side.

EXAMPLE
> omit(50)

The above line would cause the next 50 characters following *** to
be omitted from the processing and from the output.

5. The use of nulls— A ‘null’ in ccCis written as two delimiters with

nothing in between? or™ . It has a use on both the search side
and on the replacement side. If certain cautions are not heeded, it
can cause an endlds®p when used on the search side.

a. Replacement side null—A null on the replacement side simply
means that a ‘nothing’ will be output. It is usually shown on the
replacement side only for human readability.

EXAMPLE
"text string" > " use(10)
"text string" > use(10)

Both of the above lines have the same result—in each case, noth-
ing is sent to output.

b. Search side null—Using a null as a search argument means

“match on ‘nothing’”. A null (or ‘nothing’) has a length of zero
characters, thereforec will attempt to match it last when all en-

8/1/96

Mod 8

Moving Text On Through Page 63

tries are sorted by length. A null wdlwaysmatch the zero-
length ‘nothing’ between the search pointer and the first character
to the right of it.

EXAMPLE (drop everything but the section heads)
group(1)
"\s" > dup use(2)
> omit(1)
group(2)
"\ > use(1)

In group(1) of the above example, unless the two characters to
the right of the search pointer are ‘\s’, the null search entry will
match on a ‘nothing’ to the right of the search pointer.

EXAMPLE
Input text:

\id MAT ...

|

search pointer

The data stream would first be compared with \s’. Since that
would not result in a match, the data stream would then be com-
pared with a ‘nothing’. The ‘nothing’ between the pointer and the
‘" doesmatch, the ‘nothing’ is removed from the data stream
causing the pointer to (still) point before the “\id...", and the re-
placement instructions are performed. The first instruction in the
replacement ismit(1) , which causes one character to the right

of the search pointer (the ‘\') to be removed from the data stream.
With the search pointer now pointing before the ‘id..."’ the search-
ing for a match continues.

. Nulls ancendfile —After all the input text has been read, there

will still be one more character, tead of file in the input. Here

it is necessary to prevent a null search entry from matching the
null located between the search pointer and the end of file charac-
ter, since a null search entry will mai@hywhere This would be

an appropriate time to use thaifle entry described above to
match the end of file and sendemdfile character to the out-

put, ending the program.

. Nulls in multiple search groups—When searching for a null

while multiple groups are active (e@e(1,10,20)), be sure

only the last active group has the null entry. If it is located in any
other group, subsequent groups welerbe searched since the
null will have already been matched.

8/1/96

Page 64

International Publishing Services PAD-CCP

e. CAUTION !'I'l' The endless loop—As just seen, when a null

search argument matches on a ‘nothing’, no forward progress is
made by the search pointer. Therefore, to prevent the null search
from matching at the same spot agand again, and again.,.)

you must either:1) include a replacement side command such as
omit , orfwd (see next modulebhat forces the pointer to mowad

an endfile > endfile entry to terminate the program should
the input data run out, @yinclude a replacement sidee com-

mand to switch groups to one where a valid match can occur.

Otherwise, the program may be stuck in an endless loop with no
escape bCTRL/ALT/DEL>!

VOCABULARY and CONCEPTS

<CTRL/ALT/DEL> —Pressing<CTRL>, <ALT>, and keys at the

same time will cause the computer to reinitialize. This is called a
warm boot.

loop—When a program’s logic leads it into a circular path, execut-

ing the same set of instructions over and over with no change or
advancement, it is in a loop. It will continue cycling through

those same instructions without end. The program must be termi-
nated withcCNTL/ALT/DEL>. Then find and change the erroneous
logic in the change table and rerca

PRACTICE ACTIVITIES and QUESTIONS

1. Write an entry that will force a match and remove the next charac-

ter from the input if no other entry matches the data.

2. Write an entry that, when used along with a null match entry, will

match at the end of the input file and terminatectherogram,
thus preventing an endless loop.

3. Write the replacement side which will cause the match to be writ-

ten to the output.
any(sp) >

4. Will any of the following entries cause a problem? Why?

a. "> omit
b. ™ > use(2)
c. >

8/1/96

Mod 8 Moving Text On Through Page 65

5. List TAGTOSFM.CCT and look at the uses aidip, next , nulls,
andomit .

READING ASSIGNMENT

CC User’s Guide: 15dup,16 endfilg 21 next,21 null match or replacement,
22 omit, 34 endfile (bottom of page)

EXERCISES

1. Write a table which will do the following:

— write the \id line to output;

— strip all otheisFms (but not the text following them);

— strip all Ventura tags (i.e., strip all strings that begin with ‘@’
and end with <space=<space’);

— strip all Ventura text attributes (i.e., strip all strings that begin
and end with angle brackets: ‘<. .. >’).

Use two groups. One of the groups will contain all of the ‘end of

string’ elements (i.e., * =, >, * ', and ‘new line").
Use nullsdup, next , andomit to the fullest extent.
Runcc usingFRUME.TXT as input, and check your output.
When finished print your table, and hand it in.

2. Modify your change table written for Exercise 1 to replace the
\p ' srMand the ‘@par = ’, ‘@par—fol-sect = ’, and
‘@par—fol-chp = ’ Ventura tags with **para** ’ (while
still stripping all otheisFms and tags). Again rubc using
FRUME.TXT as input and check your output. Print your table and
hand it in after completing Exercise 3.

3. At the bottom of your Exercise 2 printout, write out a statement

from memory of how to avoid getting into an endless loop with a
null search.

8/1/96

Page 66 International Publishing Services PAD-CCP

Mod 9 Going To And Fro

COMMANDS/TOPICS COVERED

fwd what can be searched for
back what can be sent to output
OBJECTIVES

At the end of this module, the student will be able to:

» demonstrate an understandingpadk andfwd by answering ques-
tions concerning specific input and table entries;

» modify and/or write tables correctly usibgck andfwd ;

* list from memory at least 3 of the 4 types of items which can be
searched for and 4 of the 5 types of items which can be sent to output.

INSTRUCTION

1. Sending input directly to output withfwd — Thefwd command is quite
similar toomit except itforwardsthe number of input characters
specified in its parenthesized argument directly to output rather than
omitting them. When no number is specified followind , the num-
ber one is the default.

To illustrate, look at the commanmned(3) . This command causes

the first three characters to be removed from the input (the right side
of the search pointer), and placed unchanged into the output (the left
side of the search pointer).

EXAMPLE
id" > fwd(3) ¢ forward book name to output

Data stream at time of match: did MAT Quechua ...

search pointer

After match, before replacementMAT Quechua ...

search pointer

After replacement: MAT Quechua ...

I

search pointer

8/1/96

Mod 9

Going To And Fro Page 67

The most useful purpose of tel command is when it is used in

the replacement side of a null match to move one character of the in-
put directly to the output. The search pointer essentially moves one
character, thus preventing an endless loop.

. Retrieving output with back — In the same manner &gl sends input

directly to outputpack sends the specified number of characters of
the outputback into thenput for reprocessing. The characters will

be removed from the output just to the left of the search pointer and
placed unchanged in the input just to the right of the search pointer.
Again if no number of characters is specified wiibk , the default

is one.

Let's look again at an example similar to the one used in Mod 7:

EXAMPLE

group(1)

"\id" > dup store(book) fwd(3) c begin book store
" " endstore out(book)

"\c" > dup store(chpt) use(2) c begin chpt store
"s" > dup ¢ protect known SFMs
“p" > dup
"W " > dup store(verse) use(3) ¢ begin verse store
"\ > "Unidentified SFM found at " ¢ send error msg
out(book,chpt,verse) ¢ for unknown SFM
¢ with ref
group(2)
"\ > endstore out(chpt) ¢ end chpt store
append(chpt) ":" ¢ add colon after
endstore ¢ chpt no.
dup back(1) use(1) c retrieve backslash
group(3)
" > endstore out(verse) ¢ keep verse no.
dup use(1) ¢ in output

The last line ofyroup(2) uses thé@ack command. Why is it used
here? It is because the ‘\" entrygroup(2) will match the first
backslash in the input text following a chapter number element, sig-
naling the start of a nesFm. Once it is matched, the backslash is
removedrom the input text and is unavailable for further matching.
Unfortunately, it is still needed in the input string in order to cor-
rectly identify the subsequesEM in group(1) !

To make the ‘\" available for matching again, it miistt be placed
into theoutputby thedup command so that it can thente¢rieved
from the output and returned to timput with back(1) for reproc-
essing.

Let’s step through the commands in this example table using the

8/1/96

Page 68

International Publishing Services PAD-CCP

data stream..him. \c 2\s Jesus..." , Starting with the search
pointer positioned before the chapsem while group(1) is active:

"...him.\c Z\IS Jesus..."

Again the characters to the right of the search pointer in this data
stream are input text characters, copied into the data buffer from the
original input file. The underlined characters to the left of the pointer
are output text characters, which will ultimately be copied to the out-
put file.

Searching the entries gnoup(1) , the"\c" entry will match the
input text:

"..him.\c ZQSUS..."

The matched text is removed from the data stream:

"...him. 2\s Jesus..."

In the replacement forc" , dup will copy the ‘match buffer’ to
the outputstore(chpt) will divert all future output to the ‘chpt’
storage area, ande(2) updates the currently active groups list:

" ...him. \c 2\s Jesus..." ‘chpt’: (empty)

With that replacement finishedg is ready to do a new search.
Checking the active group list it findsup(2) active. However, it
does not find a match group(2) . Therefore exactly one character
is removed from the inputié thought had matched) and an identi-
cal character is placed in the output (which has been redirected to
‘chpt™):

" ...him. \c \s Jesus..." ‘chpt: 2

|

Before looking for the next match, the active group list must be con-
sulted, and it says to (still) ugeup(2) . The ‘\’ entry matches the
input:

"...him. \c \s Jesus..." ‘chpt’: 2

The matched character is removed from the data stream:

8/1/96

Mod 9

Going To And Fro Page 69

"...him. \c s Jesus..." ‘chpt’: 2

Output is restored to the data streanedwstore , andout(chpt)
copies the contents of ‘chpt’ to the output:

" ...him. \c 2s Jesus..." ‘chpt’: 2

Output is once again diverted to the storage area ‘chpt’ by
append(chpt) without erasingts contents. A ‘:’ is output to it,
then output is restored to the data strearmbytore

" ...him. \c 2s Jesus..." ‘chpt: 2:

The ‘match buffer’ containing ‘\’ is copied to output thyp:

" ...him. \c 2\s Jesus..." ‘chpt: 2:

One character is removed from output and placed in input by
back(l) , and the active groups list is updateduby(1) :

" ...him. \c 2\s JesTus..." ‘chpt”: 2:

This results in the search pointer now being positioned before the
backslash in the data stream, ready to be compared to the search en-
tries ingroup(1) . The output text still contains the same sequence

"¢ 2" that previously existed in the input, while the ‘chpt’ storage
area is now updated with the current chapter number, including a co-
lon, for use at later stages of the text analysis.

This level of detail may seem excessive but a good understanding of
the flow of text through the processing will be helpful in debugging
complex tables.

3. Summary of types of items in search and replace sides—Perhaps it's time

now to list specificallyall the types of things which can bearched
for and things which can ksent tothe output file. We’ve already
discussed most of them.

a. What can be searched for?
1) any character or string of characters within delimiters, includ-

ing spaces and tabs,
2) nl , which will match on line endings,
3) characters in a storage area through the use of commands like

8/1/96

Page 70 International Publishing Services PAD-CCP

any, wd, fol , etc.

4) Ascll numbers. Any character, which cannot be represented
by a ‘key top’ character on the keyboard (such as non-printing
Or upperAascll codes) can be represented bygsli code.
Any number outside of delimiters will be assumed to be an
ASCII code. If a ‘d’ immediately precedes the number, the
number will be treated asd@cimalAscili number. With no let-
ter preceding the number, it will be assumed to be octal.

EXAMPLE
" >d9 c replace 3 spaces with tab

10 > ¢ remove backspace

b. What can be sent to tbatputfile?
1) character strings within delimiters

2) nl, i.e., a<CR/LF> character

3) Ascll numbers (outside of delimiters)

4) contents of storage areas by using commaundsindouts
5) All unmatched characters not specifically omitted

VOCABULARY and CONCEPTS

ASCIll numbers—(American Standard Code for Information Inter-
change) A numbering system used by computers. A number is as-
signed to each character or control function. For the octal,
decimal, or hexadecimal representation of these numbers and the
assigned characters see the chart at the end of theer'sGuide.

PRACTICE ACTIVITIES and QUESTIONS

1. After matching on a backslash, we want to make it available
again for another match. Will the following entry do this? Why
or why not?

"\" > back(1) use(2)

2. Write in the correct entry to send #$@m and three-character
book name directly to the output unchanged, after matching on
ll\id "

8/1/96

Mod 9 Going To And Fro Page 71

3. Beginning with the following data buffer and search pointer posi-
tion, perform the match described in the table entry, then write
the resulting data buffer and search pointer position:

DATA BUFFER

\s ?7Be’taj okme’'dik ya'e? \r [Lc. 12.2-9]

TABLE ENTRY
"[" > "(" back(1) use(40)

RESULTING DATA BUFFER

READING ASSIGNMENT

CC User’s Guide: 8 ASCII codes]12 back,17 fwd, 36-38back

EXERCISES

1. a. Write a “cleanup” table that will accomplish the following:
— change multiple spaces into single spaces;
— change multiple new lines into single new lines;
— remove spaces from the beginnings of lines and from the ends
of lines;
— remove spaces before backslashes;
— ensure that a new line precedes every backslash.

b. Key in your table and runc usingsSLOPPY.SFMas input.

Check the results.
c. Print the table and hand it in after completing the following

Exercise 2 and 3.

2. From memory list at least 3 of the 4 types of items which can be
searched for and 4 of the 5 types of items which can be sent to
output. After writing your answers on the following lines, trans-
fer your answers to the bottom or back of the Exercise 1 printout.

8/1/96

Page 72 International Publishing Services PAD-CCP

a. Types of items which can be searched for:

b. Types of items which can be sent to output:

3. List CSTCHK.CCT ; make a note of the usesdre(1) and
store(2) in the beginning comments; searchdefine(2) . Be-
low your Exercise 2 answer on the printout, write out what the re-
placement action afefine(2) is doing. (You are not expected
to understand the meaningdafine or of the storage contents,
only describe what is being sent to output.)

8/1/96

Mod 9 Going To And Fro Page 73

8/1/96

Page 74

International Publishing Services PAD-CCP

Mod 10 Introduction to Switches

COMMANDS/TOPICS COVERED

switches if endif
set else visual alignment
OBJECTIVES

At the end of this module, the student will be able to:

demonstrate an understanding of the concept of switches by identify-
ing and providing some common decisions which fit the concept of
switches;

modifying and/or writing change tables correctly usiag, if ,

else , andendif ;

visually align the components of a change table to aid human read-
ability.

INSTRUCTION

1. The concept of switches— One of the strengths of Consistent Changes

is its ability to make changes based ondbwtextof the match. This
can be accomplished in several different ways. One way is to set a
switchwhen a certain condition is encountered, and thégsto
whether that switch is on or not at the decision point where the
change is to be made.

Perhaps the most familiar switch to compare the concept to would
be an electric light switch in a room. The logic might include: when
someone enters the room, the light is turned on; later, when someone
else comes along, he can decide whether to go into the room to see
the first person by whether the light is on or not.

Now let’s put this example in the structure more like we would deal
with in cc. We find an input match (person A) so we turn the switch
on. Later we have another input match (person B). The replacement
action iscontingentupon whether person A preceded, so we test the
switch. If the switch is on, person B will go into the room. But if it is
not on, person B will go elsewhere.

The rest of this module and the next will provide you with the com-
mands and syntax for using switches.

2. Turning switches on withset(name) — Like most light switches;c

switches have two statesen andoff. A switch is turned ‘on’ with

8/1/96

Mod 10 Introduction to Switches Page 75

theset command, immediately followed by the name of the switch

in parentheses. (The same rules apply to switch names as apply to
groups and stores.) Because a switch will be turned on as a result of
an input match, we know that ts& command will be used only

on the replacement side.

EXAMPLE

group(1)
"\c" > set(chpt) use(2)

Here a match on “\c’ will turen a switch named ‘chpt’ for later
testing.

3. Testing a switch withif(name) — In our original example we might
have stated this step aé:the light is on, go into the room. In other
words, the action of going into the room will be taken only if the
light is on.

Let's pursue oucc example that was presented above:

EXAMPLE
group(1)
"\c" > set(chpt) use(2)

"\s" > if(chpt) "@sect fol chpt ="

When ‘\s’ is encountered in the input, we want to know if the section
head is immediately following a chapter number. If it is, we will out-
put a Ventura tag that has appropriate spacing for a section head fol-
lowing a chapter number.

4. Stating the alternate action withelse — What happens if the switch is
noton? Sometimes nothing—the action that would be taken if the
switch were on fails to occur, and that is all that is required. But
other situations call for one consequence if the switch is on and an-
other consequence if the switch is off. ‘If the light is on, go into the
room; otherwise, go watchv’. For ourcc example:

EXAMPLE
group(1)
"\c" > set(chpt) use(2)
"\s" > if(chpt) "@sect fol chpt ="
else
"@secthd ="
One Ventura tagdsect fol chpt =) is output if the switch is on,

but a different tagd@sect hd =) is output if the switch is not on.

5. Ending the conditional action withendif — Mostif statements will re-
quire arendif . This is necessary for the program to know how

8/1/96

Page 76

International Publishing Services PAD-CCP

many actions to skip if the switch did not have the right setting for
those actions to be executed.

EXAMPLE
group(1)
"\c" > set(chpt) use(2)
"\s" > if(chpt) "@sect fol chpt ="
set(\c\s)
else
"@secthd ="
endif
set(sect)
use(3)

Now, if ‘chpt’ switch is on, a tag hame is written to output and an-
other switch is set—indicating that a chapter number followed by a
section head has been encountered.ekhe establishes a boundary
on the actions to be taken if ‘chpt’ switch is on. If ‘chpt’ switch is

off, a different tag is written out, and the boundary of the ‘off’ conse-
guences is established éydif .

What about the two actions following thedif ? They are uncondi-
tional actions to be taken regardless of ‘chpt’ switch settings. With-
out theendif , these actions would be indistinguishable from the
‘off” actions.

Unconditional actions (actions to be taken regardless of switch con-
ditions) can be placed either before thecommand or after the

endif . Sometimes it may be necessary to perform an unconditional
actionbeforetheif ; other times an action may be requiedtdr the

endif . Study the following example:

EXAMPLE
group(1)
"\c" > set(chpt) use(2)
"\s" > store(sect)

if(chpt) "@sect fol chpt ="
set(\c\s)

else
"@secthd ="

endif

endstore

set(sect)

use(3)

Note that thendstore command would produce different results
had it preceded thendif command.

8/1/96

Mod 10 Introduction to Switches Page 77

Let's look at one final example where @se is not needed:
EXAMPLE

endfile > if(paren)
***EINAL PAREN UNMATCHED IN’
out(book) nl
endif
endfile

Here the end of the input file has been encountered and a closing pa-
renthesis was never found to match the last opening parenthesis. An
error message is generated. €hdgif forms the limit of actions to

be taken if the ‘paren’ switch is on even though there igseo.

Theendif is needed so thanhdfile will be output whether the

‘paren’ switch is on or off.

6. Testing for multiple conditions— Frequently it is necessary to test two
or more switches to determine if an action needs to be done. Multi-
pleif commands together can be used to accomplish this.

EXAMPLE
"\s" > if(chpt) if(intro) "@sect int ="
endif
set(sect)
use(3)
In this example, the Ventura ta@sect int =" will be output

only if both switches ‘chptand‘intro’ are on. Also, thendif com-
mand endsll if conditions currently in effect so thagt(sect)
use(3) will be performed unconditionally.

7. Alignment hints for readability— There are certain alignment ‘conven-
tions’ which will greatly enhance readability when followed:

EXAMPLE
group(1)
"search string" > actions c comments
if(name) Cc comments
actions (incl. strings) ¢ comments
else
actions (incl. strings) ¢ comments
endif
other actions (incl. strings) ¢ comments
"search string" > actions c comments
group(2)
any(name) "txt" > actions Cc comments

A scheme such as this will greatly assist you or someone else in fol-
lowing the flow of logic through a table.

8/1/96

Page 78 International Publishing Services PAD-CCP

PRACTICE ACTIVITIES and QUESTIONS

1. Which of the following decisions fit the concept of switches?
___a. If the manuscript is complete, we will publish it.

___b. If the text contains Standard Format Markers, we’llogse
___c. Because the printer is broken, we can’t complete the job.
___d. We will recover the file, if we have the backup disk.
___e. On Monday afternoon, we will have a meeting.

2. Some translators will code into their text a second (or third) ‘\s’
to force a line break in a long section head. Write the table entry
to replace all but the first \s’ in a section head with a Ventura
line break<rR>. (Assume that the switch is cleared elsewhere in
the table.)

3. Rewrite the following entry for better visual alignment.

"\c " > if(\c) endstore "duplicate \c found at "
out(bk,chpt) use(4) else set(\c) store(\c) dup
back(3) use(7) endif incl(10)

READING ASSIGNMENT

CC User’s Guide: 15 else,16 endif, 18 if, 24 set,40-44switches

8/1/96

Mod 10

Introduction to Switches

EXERCISES

1. In Mod 9, Exercise 1, you wrote a table to ensure that each ‘\’
started on a new line. Most likely it resulted in an extra new line
before the first ‘\" in the file. Rewrite your table using a switch to
determine if the backslash ought to have a new line before it or
not.

Runcc usingsLOPPY.SFM check your results; print and hand in

your table, after completing Exercise 2.

2. On your Exercise 1 printout, write a single entry that, upon
matching\ , will do all of the following:

a.

©aoooT

put it to output and back up over it;
activate group(2) if switch ‘\c’ is on;
activate group(3) if switch ‘\s’ is on;
activate group(4) if switch ‘\r’ is on;
activate group(5) if switch ‘\p’ is on.

8/1/96

Page 79

Page 80

International Publishing Services PAD-CCP

Mod 11 More On Switches

COMMANDS/TOPICS COVERED

clear ??7? search technique
ifn mark & rewind technique
OBJECTIVES

At the end of this module, the student will be able to:

» modify and/or write tables correctly usidgar andifn ;
* modify a table using ??? search technique;
» modify a table using mark and rewind technique.

INSTRUCTION

1. Turning the switch off with clear(name) — Returning to the example
first used at the beginning of Mod 10 (the light switch), this will
only work if person A remembers to turn the light off when he
leaves the room. (I seem to recall my mother harping on thatt},In
a switch is turned off by th&ear(name) command.

EXAMPLE
" > set(paren) dup
" > if(paren)
dup clear(paren)
else
"UNMATCHED)"
endif

endfile > if(paren)
"UNMATCHED ("
endif
endfile

In this example, a switch is set when an open parenthesis is found.
When a closing parenthesis is encountered, the switch is turned off if
it is on. If it is not on, an error message is put to output. If the switch
is not turned off after a close parenthesis is processed, then sub-
sequent close parentheses would not generate error messages.

2. Testing for an off condition withifn(name) — If consequences were

only to be performed if the switch was off, it would be possible to
write the entry:

8/1/96

Mod 11 More On Switches Page 81

EXAMPLE
"string" > if(name) ¢ (do nothing)
else
"consequence”
endif

However, we have been provided a more straight forward way of do-
ing this with thefn(name) command. The literal reading of this is:

if switch(name) isNOT on, then do consequences. HereCTayn-

tax example:

EXAMPLE
' > ifn(paren) "EXTRA) FOUND AT"
out(book,chpt,verse) nl
endif

Thisifn command can also be used wilie and alternate conse-
guences. However, there would be little reason not t@ usather
thanifn when there are consequences for both states. Combining
andifn conditions is acceptable. For examiiles) ifn(\r)

would require ‘\s’ to b@nand‘\r’ to be off for the consequences to
be performed.

3. Additional tips and techniques involving switches.

a. Setting/clearing a switch twice—There is no harm in setting (turn-
ing on) a switch that is already on, or clearing (turning off) a
switch that is already off. This is sometimes deliberately done to
ensure that a switch currently has the correct setting.

b. ??? Search Technique—We have a number of estabiisttad
bles which are used in the preprocessing stage of preparing a
manuscript for publishing. Several of them offer one or more op-
tions that can be selected (See Figure 11.). An option is usually
selected by setting a switch. The table is constructed witletthe
switch command already in thegin entry. Thisset command
can be deactivated or reactivated by inserting or remouwng a
from the beginning of the line. (Themakes the line a comment
So it is not performed.)

In order to make the table more easily modifiable, the option
switches (theet commands activating the options) are usually
marked with ??? (triple question marks) in the comments at or
preceding each sught command. In this way, the user can
‘search’ the table for ??? using his word processor and easily find
the options and theset commands. (This ??? is also used to
mark any parts of the table which may need job specific modifica-
tion such as stores, etc.)

8/1/96

Page 82 International Publishing Services PAD-CCP

Fig. 11. FLAGEM.CCT

c Mod 53 14-DEC-90 LIB:FLAGEM.CCT

¢ WARNING: ERRONEOUS CHARACTERS that occur in id lines,
c book titles, picture captions, & footnotes will not be

c found by this table. Only those found in para-

c graphs, poetry, or section heads will be found!

¢ Search for "???" to locate modifyable sections of table.

C CCe
begin > clear(ENG,PORT,SPAN)

C CCe
c ??? SELECT THE PREDOMINANT QUOTE SYSTEM USED:
¢ ENGLISH - the default:

set(ENG)
c PORTUGUESE:
c set(PORT)
c SPANISH:
c set(SPAN)

C CCe
c ??? IF THE PREDOMINANT QUOTE SYSTEM IS NOT ENGLISH
c (QUOTE MARKS "<<" ARE NOT USED)

c OR

c IF "<<" IS NOT REQUIRED WHEN A CITATION CONTINUES

c AFTER A NEW PARAGRAPH, CHANGE THE FOLLOWING STATEMENT:
¢ ENGLISH style - the default:

set(<<PAR)
¢ not ENGLISH style:
c clear(<<PAR)

C CCe
(o ??? SELECT THE QUESTION-EXCLAMATION MARK SYSTEM USED:
¢ ENGLISH - the default:

clear(SP??)
¢ SPANISH:
c set(SP?7?)
C CCe
c ??? SELECT THE CROSS REFERENCE STYLE OF THIS DOCUMENT:
¢ CROSS REFS IN PARENS - the default

set(Refinpar)
¢ CROSS REFS WITHOUT PARENS
c clear(Refinpar)

C CCe
c ??? TO ALTER THE BOOK AND CHAPTER DISPLAY:

c DISPLAY ALLOWED - the default
set(disp)

c DISPLAY INHIBITED

c clear(disp)

C CCceeeeeeee
c ??? TO IGNORE FOOTNOTE MARKER REPORTING:

c REPORT ON FOOTNOTE MARKERS - the default
clear(ignfm)

c IGNORE FOOTNOTE MARKERS:

c set(ignfm)

8/1/96

Mod 11

More On Switches

c. Mark and Rewind—Sometimes it is necessary to make changes

that depend on what follows a match. Mark and Rewind is a tech-
nique to getcto look ahead in a file, see what is there, and re-
turn to the original match to make the proper change.

Let's say we want to put out one of two Ventura tags for a sec-
tion head (\s) depending on whether the text element following it
is a chapter (\c) or not. Figure 12. shows a technique for doing
this. In this example, the text elements in question closely follow
each other, so a store could have been used. But sometimes a
great distance must be covered in the text file to find the needed
information before making the current decision. This technique is
most helpful then.

When a section head is encountereslARK>" is inserted into

the output file. This is to mark our current place in the input file.
(We could have insertedxx" or any other text that we were cer-
tain did not otherwise exist in the input file.)

Then we look ahead, doing no other processing but looking for
the next text element. All of the input text is passed unchanged to

Fig. 12. Mark and Rewind Technique

C EXLSN5B.CCT -- example of a table that looks ahead of a
C match to see what follows, and makes a different
C replacement depending on text that follows the match.

group(sfm) C finds sfm’s
' >'@verse =’ C outputs verse paragraph tag
s’ >'<MARK>’ C found sect hd, outputs a mark

' >’'@chapter =’ C output chpt paragraph tag
group(look_ahead) C looks ahead to next sfm
\c' >dup C found chapter sfm, dup
set(chapter) C set chapter switch
use(rewind) C go back to mark
> dup C found sfm other than chpt
clear(chapter) C clear chapter switch
use(rewind) C go back to mark
group(rewind) C find mark, output proper para tag
'<MARK>’ > if(chapter) C found mark, if chpt sw set,
‘@Chap. Section =" C output chpt sect tag
else C else, chpt switch not set
'@Reg. Section ="’ C output reg sect tag
endif
use(sfm) C return to sfm search
> back(1) C backup till <MARK> found.

use(look_ahead) C look ahead to next sfm

C (max of 200)

8/1/96

Page 83

Page 84

International Publishing Services PAD-CCP

the output file until the next element is encountered. If it is a ref-
erence (\c), a switch is set. If it is any other element (\), the
switch is not set.

Now we begin the ‘rewind’ process, backing up one character at
a time—taking it out of the output and putting it back into the in-
put. Each time we put a character back into the input we check
again to see if the next six characters in the inputareRK>".
Eventually, when we have backed up enough characters, we will
have backed up over oWtMARK>", putting it back into the input.

At this point we have a match and we know we are back where
we started from—only this time our switch will tell us whether
the following element is a chapter or not.

PRACTICE ACTIVITIES and QUESTIONS

1. List FLAGEM.CCT and search for the switch named ‘SecHd’. For

each occurrence, list below the search side of the entry and the
switch command usedet , clear ,if , orifn).

2. Starting at the beginning BEAGEM.CCT, locate all ‘??7?’s.

How many are there?
How many are for setting or clearing switches?

8/1/96

Mod 11

More On Switches Page 85

List the names of the switches at these locations.

. There are some very strange looking switch names in this table.

In the section ofroup(1) dealing with quote marks, there is a re-
placement action containing:

ifn(<<-<-<<,<<-<,<< <) L.

a. how many switches are named?
b. what does it mean, in terms of switches being on or off?

READING ASSIGNMENT

CC User’s Guide: 14 clear,19ifn

EXERCISES

1. CopyFIXEM.CCT to a file nameMYFIXEM.CCT. Search for “??7?’

and make any alterations necessary to:
. allow display;

a

b. alter line length to ‘70’ characters;

c. strip footnotes;

d. not insert footnote markers;

e. strip illustrations;

f. allow only ‘" and ‘=" with verse numbers;

g. allow “\eq’ to be a legitimatsrm, in group(2) ;

h. ingroup(10) , enable the changes -u’to‘ u’; -U'to *_U’;
“"’to‘l;and *:: "to ‘:’; and add the change ‘="to ‘-’;

I. in the two entries with thexXxfor the backup and rewind,
change thexxx" to"&&&" .

Runcc in display mode usingOMT.SFMas input and observe
the changes, especially from the insertion of'&lge."
through its removal. Print your output file and hand in.

8/1/96

Page 86 International Publishing Services PAD-CCP

Mod 12 ‘I’ Commands Using Stores

COMMANDS/TOPICS COVERED

ifeq ifneq cont
set(dummy) ifgt incr
OBJECTIVES

At the end of this module, the student will be able to:

» modify and/or write tables correctly usiognt , ifeq , ifgt , ifneq
andincr ;

» demonstrate an understanding of counter initializing by writing the
output for specific input text and table entries using counters.

INSTRUCTION

1. Comparing storage areas to strings usingeq(name) — A replacement
action can be dependent on the contentsstdrage arealn this
command, if the character string stored in a storage area ‘name’
equals another designated string, then the consequences are per-
formed.

EXAMPLE
"\s" > ifeq(lastSFM) "\s" out(book,chpt)
"Successive Sect.Hds Found"
endif

The replacement side would read: if the string stored in the storage
area named ‘laseM’ equals ‘\s’, then send the contents of the stor-
age areas named ‘book’ and ‘chpt’ to the output, followed by the
string ‘Successive Sect.Hds Found'.

Theifeq command is a type of ‘if command that requires a stor-
age area name and a character string, and is simifarinathat it
may also uselse , alternate consequences, andif .

The character string which the storage area is compared to may in-
clude a character string within delimiters (as shown in the above ex-
ample),nl , andAscIil numbers. The string is terminated by the next
commandexcept foml orc). In the above example, the string is
terminated by theut command.

But what if we wanted to put out the message within the delimiters
first and then the book and chapter from the storage areas?

8/1/96

Mod 12

2.

3.

‘If" Commands Using Stores

BAD EXAMPLE
"\s" > ifeq(lastSFM) "\s" "Successive Sect.Hds Found at"
out(book,chpt)
endif

In this example thec program would have considered trdire
string"\sSuccessive Sect.Hds Found at" to be the string that
storage area ‘laseM must be compared to—with the consequences
beingonly out(book,chpt) I How could we avoid this? There must

be an intervening command between the two strings. One possibility
is to set a ‘dummy’ switch which servies purpose except to exist
there as @ommangthereby signaling the end of the string for the
compare:

EXAMPLE
"\s" > ifeq(lastSFM) "\s" set(dummy)
"Successive Sect.Hds Found at"
out(book,chpt)
Now, theset(dummy) command will terminate the string that
‘lastSFM’ must equal, and the string ‘Successive Sect.Hds..." is rec-
ognized as a consequence.

If not equal commandifneq(name) — This command works exactly
the same as thieq command except that it means “if the character
string stored in the storage area ‘nameldg equal to...”

If greater than commandifgt(name) — This related command is

most commonly used to compare numeric strings with each other. It
means “if the number in storage area ‘narmm@reater thanthe

number designated in the numeric string following it, then perform
the consequences”.

NOTE: There iNOiflt or ‘if less than’ command!

We will cover two more commands before looking at some more
examples.

4. The contents commandont(name) — This means “the contents of

the named storage area”—that’s all! It can be used in conjunction
with one of the above ‘if’ commands—replacing #teng to be
compared with:

8/1/96

Page 87

Page 88

International Publishing Services PAD-CCP

EXAMPLE
"\s" > store(newSFM) dup endstore
ifeq(lastSFM) cont(newSFM)
"Successive \s found at"
out(book,chpt)

Note that sinceont is used instead of a string, the dummy switch is
notneeded. There is no string to terminate.

The commandont may be used in other types of entries as well—
nearly any place a string could be used. It can even be used as a
search argument:

EXAMPLE
cont(lastSFM) > ifn(verse) "Successive" out(lastSFM)
"Found at" out(book,chpt)
endif

. Incrementing a storage area usingicr(name) — The commanéhcr

will cause the value stored in the named storage area to increase by
one. This is a useful command for counting the number of times an
item is found, or for counting the times an event occurs (such as how
often a replacement action has been performed).

EXAMPLE 1

begin > store(\s) "0" endstore

"\s" > incr(\s)

endfile > out(\s) " section heads were found"
endfile

EXAMPLE 2

"\ > "Unidentified SFM found at"
out(book,chpt)
incr(errcount)

ifgt(errcount) "5" set(dummy)
"Text not ready for processing" nl
"At least " out(errcount) " errors found."
endfile

endif

In these examplesicr is used to increment storage areas which are
being used asounters In the event a storage area is not initialized
(i.e., created usingiore and the string ‘0’ placed in it) and it is in-
cremented for the first time usingr , then the program will first

create such a storage area, pretend it contains a ‘0’, then increment it
to ‘1.

Notice what would happen in Example 1 if the storage area \s’ were
not initialized to zero (or not created) and if no section heads (\s)
were encountered. Thet(ls) command would then output a stor-
age area without anything in it; ‘nothinga-null rather than a

8/1/96

Mod 12

‘If” Commands Using Stores Page 89

zero—would have been sent to the output at the end of file. The
message will then readsection heads were foundither than
‘0 section heads were found’

If it will minimize confusion and aid readability and understand-
ability, the storage areas should be initialized irbthys state-

ment. This can be used as documentation of all the stores which are
used in the table and, with comments, can explain the use of each.

Several examples are included below which use the commands dis-
cussed in this module. They are portions or complete tables which
are used in the preprocessing stage of manuscript publishing. The
Practice Activities and Questions which follow the examples will
make use of them.

EXAMPLES

Fig. 13. from VPNAM.CCT
c VPNAM.CCT Mod 89 31-JAN-91
c from VPNAM.CCT Mod 87 15-JAN-91

c

modified for PAD-CCP, May 1991, by K. Seitz

c A table to convert SFMs to VP tags for Scripture
(o9:9:9,:9.9.9,.0,:9,:9.9.9.0.9,:9.9.9.0.9.:9.9.9,0.9.9.9.9.9.9.9.9.9.0.9.9.9.9.9.0.9.9.0.9,.0.9.9.9.9.0.0.0.0 0

¢ Outputs an incremented letter for the footnote marker.

group(105)
any(Num) >dup
a*’ > endstore ¢ "a*" indicated multiple

ifeq(mkrlet) 172
c If the last letter was z,
store(mkrlet) 141 endstore
c start over again with a.
else incr(mkrlet)
endif
out(mkrlet) back(1) use(106)
" > endstore
ifeq(mkrlet) 172
c If the last letter was z,
store(mkrlet) 141 endstore
c start over again with a.
else incr(mkrlet)
endif
out(mkrlet) back(1) use(106)
any(Div) " > endstore ¢ The letter is not
out(mkrlet) back(1) use(106)
¢ other than the 1st one
¢ for this footnote.

8/1/96

XXXX

Page 90

International Publishing Services

Fig. 14. LONGWD.CCT

PAD-CCP

C kkkkkkkkkkkkkkkhkkkkhkkkhkkkkkkhhkkkkkkhkkkhkkkkhkkkhkhkkkkkkkk

C LONGWD.CCT modified for PAD-CCP, May 1991, by K. Seitz
C -- a table to make a list of all words of certain length

C orlonger.

C For use in setting up a hyphenation table.

C kkkkkkkkkkkkkkkkhkkkkhkkkhkkhkkkhkkkkkkkkkhkkkhkkhkhkkkkkkkk

begin > store(1) " " nl ",.;;><\|()$#/'0123456789"
endstore
store(2) '6’ endstore
store(3) '0’ endstore
store(5) 'abcdefghijkimnopgrstuvwxyz’
'ABCDEFGHIJKLMNOPQRSTUVWXYZ' endstore

group(1)
any(5) > store(4) dup incr(3) use(10)
any(1) >"
1 > bR de(l)
endfile > endfile
group(10)
” > dup fwd(1) incr(3)
ifeq(3) cont(2) use(20) endif
any(1) > store(3) '0’ endstore use(1)
group(20)
" > dup fwd(1)
any(1) > endstore out(4) nl
store(3) '0’ endstore use(1)
Fig. 15. from FIXEM.CCT
o FIXEM.CCT Mod 24 16-JAN-91

€ CCCe
¢ ???LIST job specific orthographic corrections!

c These are shown as examples only.
group(10)
o 'c’ >'/0’ incr(char,char) cau
c 'C > /O’ incr(char,char) c AU
c T >'/e’ incr(char,char) c epsilon
c 'J >’/E’ incr(char,char) ¢ EPSILON
c o} >’[n" incr(char,char) c eng
o 'Q’ > /N’ incr(char,char) c ENG
c -u’ >’ U’ incr(char,char) c barred u
c U >’ U’ incr(char,char) ¢ BARRED U
c >"/" incr(char) c Glottal
c T >'((" incr(char,char) ¢ Open bracket
c T > ")’ incr(char,char) c Closing bracket
c >"" incr(char) ¢ Grave accent
o > incr(char) c colon

8/1/96

Mod 12 ‘If” Commands Using Stores

Fig. 16. from CSTCHK.CCT

CSTCHK.CCT CHARACTER SPECIFICATION TABLE CHECKER
c 28-NOV-88 KH

(@]

(@]

CSTCHK.CCT - a validity check for Character Specifica-
tion Tables that will find certain errors that cannot
be found by the CST compiler

O o0

group(25) c store octal access code
'l any(10) > '/’ endstore set(2) use(45)
¢ composite character follows
any(15) > dup incr(3) ¢ valid octal character

any(10) > endstore ¢ white space ends access code
ifeq(3) "4’
ifgt(1) '0377° ¢ compare 4-digit num.
set(18)
endif ¢ invalid access code
ifeq(3) '3’
ifgt(1) 377’ ¢ compare 3-digit number
set(18)
endif ¢ invalid access code
use(45)

‘1% > set(15) ' ¥ back(3)

¢ white space required before comment
endfile > do(3) set(14) use(99) ¢ no SILID found
" >set(18) use(20) ¢ invalid access code

group(30) c store decimal access code
(decimal point is valid)
"I’ any(10) > '/’ endstore ¢ composite char. follows
set(2) use(45)
'l any(10) >’/ endstore ¢ composite char. follows
set(2) use(45)
any(16) > dup incr(3) ¢ valid decimal character
" any(10) > endstore use(45)
¢ decimal & white space ends access
any(10) > endstore ¢ white space ends access code
ifeq(3) '4’
ifgt(1) ‘0256’ ¢ compare 4-digit number
set(18) c invalid access code
endif
ifeq(3) '3’
ifgt(1) '256’ ¢ compare 3-digit number
set(18) c invalid access code
endif
use(45)
‘¥ > set(15) ' /¥ back(3)
¢ white space required before comment
endfile > do(3) set(14) use(99) ¢ no SILID found
" >set(18) use(20) ¢ invalid access code

8/1/96

Page 91

Page 92 International Publishing Services PAD-CCP

Fig. 17. from WRDLST.CCT

c WRDLST.CCT Mod 2

¢ This is a table to remove all data from word list files

¢ produced by TAD so each word is listed only once and
c placed on a new line without its count or references.

c storage (let) must contain all characters found in words
c in word list

begin >
store(lastwd) ¢ Stores previous word
store(thiswd) ¢ Stores current word
store(num) 1234567890’ ¢ numbers for count
store(let) "abcdefghijkimnopgrstuvwxyz™
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
endstore use(l)

€ CCCe
¢ AFTER the entire word has been stored,
¢ compare it with the previous word.

group(5)
10 > ¢ Strip backspace commands
any(let) > dup
Y > endstore
ifeq(lastwd) cont(thiswd)c This word is the
use(6) c same as the
endif c previous word.

ifneq(lastwd) cont(thiswd) ¢ This word is not
out(thiswd) store(lastwd) ¢ the same, output
outs(thiswd) endstore c it to the file
use(6) endif ¢ and to the
¢ previous word
c storage area.

PRACTICE ACTIVITIES and QUESTIONS

1. Explain what is happening in they throughendif commands
in Fig. 13 {/PNAM.CCT, group(105)).

2. In Fig. 14 (ONGWD.CCT), incr(3) means to add 3 to the
counter.

L] True [False

8/1/96

Mod 12 ‘If” Commands Using Stores Page 93

3. Write out the meaning of thfeq throughendif commands in
Fig. 14.

4. In Fig. 15 EIXEM.CCT, group(10)), why is the counter name re-
peated in théner command in several entries?

5. In Fig. 16 ¢STCHK.CCT, group(25) and(30)), write out the in-
terpretation of: ifgt(1) '377’ set(18)

6. Study thefeq andifneq entries in Fig. 17WRDLST.CCT) and
rewrite that whole replacement entry to simplify it.

7. Would it be necessary to intialize the counters in the following
situations?

a. endfile > ifgt(errcnt) '0’
out(errcnt) " errors found in file’
else 'no errors in file’
endif
endfile

L1 Yes [No

b. endfile > out(errcnt) ' errors found in file’
endfile

[] Yes [J No

8/1/96

Page 94 International Publishing Services PAD-CCP

READING ASSIGNMENT

CC User’s Guide: 14 cont,18ifeq, 19ifgt, 19ifneq,20incr

EXERCISES

1. There seems to be a slight ambiguity between the comments at
the beginning ofCHAR.CCTand the comments toup(2) where

the word length is tested. (See Fig. 7 in Mod 4.) By looking at the
actual commands, determine whether words exactly 7 characters in
length will be deleted or sent to output.

| 7 character words will be deleted.
| 7 character words will go to output.

2. Copy this file from your disk to a file namedCHAR.CCT, and
modify it as follows:
a. In thebegin entry, provide a store marked by ??? for the user

to indicate the maximum length of words to be deleted,;

b. use this store igroup(2) in testing the word lengths;

c. complete the cleanup by appropriately changing comments
and deleting the ??7? ginoup(2)

Runcc, using first theoriginal table and then your modified ta-
ble. UsesoMT.wWDL as input. Compare the results—they
should be the same. Print your talgite your answer to
Exercise 1 on the bottgrand hand it in.

8/1/96

Mod 12 ‘If” Commands Using Stores Page 95

8/1/96

Page 96

International Publishing Services PAD-CCP

Mod 13 ‘If’ Commands—Advanced Techniques

COMMANDS/TOPICS COVERED

begin more mark and rewind
end nesting ‘ifs’
OBJECTIVES

At the end of this module, the student will be able to:

» demonstrate an understanding of nesting ‘if’ commands by modify-
ing and/or writing tables using nested ‘ifs’, at least two deep, and
properly usingbegin andend.

INSTRUCTIONS

1. Variation on Mark and Rewind Technique— In Mod 11, a technique
called ‘mark and rewind’ was described. It enabled the program to
look ahead in order to base a current decision on future text. In an-
other variation of this, aurrent conditionrmay require a change in
textalreadyprocessed.

EXAMPLE (taken from FIXEM.CCT group(10), (50) and (51))

group(10) ¢ OUTPUT and COUNT this character.
c If the current character would make the
¢ line too long, 'XXX' is inserted to
¢ mark the place in the word.
' > fwd incr(char)
ifgt(char) cont(maxchars) "XXX"
back(4) use(50)
endif

group(50) ¢ BACKS UP to the previous space and
¢ ends the line.
" > nl store(char) "00" endstore
use(51)
" > back(1)

group(51) ¢ GOES forward to "XXX’ to prevent
¢ rechanging characters
"XXX" > " use(1,10)
> fwd incr(char)

In the above example, the length of the line is being limited to a
maximum number of characters. This number has been stored in
‘maxchars’ storage area. If a character being forwarded to output
causes the character count for that line to exceed the maximum char-

8/1/96

Mod 13 ‘If’ Commands—Advanced Techniques Page 97

acter limit, thenXxx" is written to output to mark the current posi-
tion. Then thexxx and the last character of output are brought back
from the output and put in the input. A search is begun for the most
recent space in the output—backing up one character at a time.

When that space is found, the line is terminaiegl, the line charac-
ter counter is zeroed, and the search is begun for the forward point
of processing marked witkxx . Upon finding this mark, normal
processing is resumed.

This example and the one in Mod 11 show that similar techniques
can be used to either loakeador behindof the current place and
then return.

2. Nesting ‘if’ commands usingoegin andend— Sometimes the actions
to be taken depend on complex conditions. For example, if the light
is on in the roonandif the time is between 7 p.m. and @n., then
someone is in there—go in and visit him. But if the light isuodit
is later than 10 p.m., someone forgot to turn the light out—so turn
off the light. If the light was not on, then no one is there, so go
watchTv. We might view this as follows:

if(light)
ifgt(time) "1859"
ifgt(time) "2200" clear(light)
else do(visit)
endif
endif
else
use(TV)

Confusing, isn't it?! Nesting ‘if’ commands can be complex and dif-
ficult to follow. Some may havelse and alternate consequences as-
sociated; others may not. By paying attention to alignment, we can
make the table a bit more readable for us humans, but unfortunately
the prograndoes not readlignment. In the pseudo example above,
something more is needed to make the program properly do what we
intendedto say, not what in reality we said.

Begin andend—You are now familiar with usingegin as the first
entry on thesearchside. But it is also used on theplacemenside

to mark the beginning of a set of actions which are terminated with
end. These commandsedgin andend) are necessary when nesting
‘if’ commands. Our pseudo example might now be written:

8/1/96

Page 98

International Publishing Services PAD-CCP

if(light)
begin
ifgt(time) "1859"
begin
ifgt(time) "2200"
clear(light)
else
do(visit)
endif
end
endif
end
else
use(TV)
endif

This may look more confusing than it is. Here’s the rule for each
level of ‘if’:
if condition

begin

actions (including pairei/endif commands)

end
else
begin

J actions (including pairei/endif commands)
end

endif

When the ‘actions’ contain additional ‘ifs’ the same rule applies.
When alternative consequences do not apply to the ‘if’ condition,
theelse and its associataggin ...end may be omitted.

There is a simple test you can perform to determine if your table is
nested properly. Draw a line from the ‘i’ of evefry command to
the ‘e’ of each respectivndif , then likewise from the ‘b’ of every
begin to the ‘e’ of each respectiead. When anifiendif pair
contains arlse , draw the line so that it touches the ‘eet .
Lines should be straight, and must be drawn to the left of all other
commands. If your lines can be drawithout crossing each other
and thaf/endif lines arealways separated by at least diee
ginfend line, then the change table is nested properly.

There are endless variations of nesting. Figures 18, 19, and 20 show

a number of examples.

VOCABULARY and CONCEPTS

nesting—this is a computer programming term. When referring to

‘if commands, it means an ‘if’ command contained within the re-

placement actions of another ‘if’ command.

8/1/96

Mod 13 ‘If’ Commands—Advanced Techniques

Fig. 18. from VPNAM.CCT group(3)

¢c COMPLETION OF VERSE NUMBERS OTHER THAN VERSE 1

group(3)
"-" > append(VsNum) outs(NBHy) c hyph in bridge
any(Num) > dup ¢ numbers
any(sp) > " endstore do(2) do(3) c space or new line
if(VInPro) ¢ mid-para vs num
begin
if(VsSty) begin c in verse style
do(10) '@VRS PAR ="
end
endif
if(ParSty) begin c in par style
if(D € no sp tween
begin c[&num
end
else
begin
'’ cspace
end
endif
end
endif
end
endif
use(1,10)

Fig. 19. from VPNAM.CCT group(107)

¢ Completes the reference marker at the beginning of
¢ afootnote. May convert the sequential number to
¢ a sequential letter (a thru z, lower case only).
group(107)
any(Num) > dup
any(sp) > " endstore
if(FMKrL) begin ¢ Marker is a ltr,
ifeq(fnlet) 172 c Resetto a
store(fnlet) 141 c if z was the

endstore c last letter.
else c Else,
incr(fnlet) ¢ change to
endif C next letter.
out(fnlet) c Ltr, .5 thin sp
end
endif
if(FMkrN) ¢ Marker is a number
out(tempn) ¢ Output the number
endif
if(FMkrS) begin ¢ Same mrkr in text.
if(FMkr) out(FMkr) ¢ Mrkr wanted.
else ¢ No marker wanted.
endif
end
endif

store(tempr) use(108)

8/1/96

Page 99

Page 100

International Publishing Services PAD-CCP

Fig. 20. from STDFIX.CCT group(10)
nl "\Wv" > ifn(\p\g\m)

begin
if(\s) begin c see note*
nl "\m"
clear(\e)
end c see note*
else
begin
if(\c) begin c see note*
nl"\m"
end c see note*
endif
end
endif
end
endif

* the table will execute correctly without these thegin/end sets since the actions
do not containf commands. All othdbegin/end sets are essential.

PRACTICE ACTIVITIES and QUESTIONS

1. Take time to study Figures 18, 19, and 20. Identify the com-
mands being used; whether they deal with switches, stores,
groups, or other; and how the logic flows.

2. Look at the use adegin andend in Figures 18, 19, and 20.
Show that these tables are properly nested by drawing lines con-
necting allbegin andend commands and also, else , and
endif commands. Notice that successive ‘if’ commands do not
requirebegin/end when the ‘if’ is completed (withndif) be-
fore the next ‘if’ begins. But ‘ifs’ which are nested (one not com-
pleted before the next begir) require aegin andend for
each ‘if’. Fig. 19 contains both successive and nested ‘ifs’. Can
you identify each?

READING ASSIGNMENT

CC User's Guide: 12 begin,16 end

EXERCISES

1. List WDLENG.CCT , paying special attention to there
commands in theegin entry and the replacement side for

any(sp) in group(2)
— Make a copy of this file calledYWDLENG.CCT.

8/1/96

Mod 13

‘If” Commands—Advanced Techniques Page 101

— Modify it so that after the letters of each word are counted, the
word lengths are tabulated by ranges as follows:

1-6 characters

7-15 characters

16—24 characters

over 24 characters
(Use thefgt command for this exercise. Do not test for each
word length individually.)

— The statistics are put out at the end of fileefne(5) . You
need not understand defines, only that they are a list of replace-
ment actions. Modify these appropriately.

— Runcg using first theoriginal table and then your modified
table. UsesoMT.WDL as input. You should be able to reconcile
the two sets of statistics.

— Print your table and hand it in.

You are processing a Scripture file containing clean text using

only five SFms. Write a table to convert tisems to the appropri-

ate Ventura tag name according to the chart below. Assume that

eachsFM starts on a new line and that a single space follows it.

SFM Tag Name Condition

\mt @TITLEM = always
\c @CHP = always
\s @SEC CH REF = when at a chapter break and followed by
a cross ref.
@SEC CH = when at a chapter break, no cross ref.
@SEC REF = when followed by cross ref,
but no chapter break
@SEC = when no chapter break, no cross ref.
\r @REF = always
\p @PAR 1ST = when first paragraph after a chapter break
@PAR = all other paragraphs

No matter which order the \c and \s are in, output them in the fol-
lowing order: \s, \r, \c, \p (for whichever elements are present).
This order will be needed for dropped chapter numbers. Use
MOD13.SFMon your disk for input. Print your table and hand it in.

Hint: Try setting a switch and storing chapter, section, and refer-
ence when they are encountered. When a \p is found, then test for
what preceding elements were found and stored, and put them out
in the proper order with appropriate tags. (Assume there will only
be onesFm of a kind prior to a \p.)

8/1/96

Page 102

International Publishing Services PAD-CCP

Mod 14 ‘Doing’ Defined Routines and Repeating

COMMANDS/TOPICS COVERED

define do repeat

OBJECTIVES

At the end of this module, the student will be able to:

» draw a block diagram of a table containing a define/do operation;
» modify and/or write tables properly usinagfine , do, andrepeat .

INSTRUCTION

1. A shortcut for repetitive actions usingdo(name) and define(name) —
When the same set of replacement actions must be performed at mul-
tiple locations within a change table, the table can become cumber-
some and unnecessarily long. (See Fig. 21.)

The same results can be accomplished by extracting these identical
routines and defining them with tkdefine command. On the
search side the entry would be:

define(name) >

with name being whatever you choose to call it—following the same
rules that apply to groups, stores, and switches. The replacement
side would contain the set of actions to be performed.

In the replacement arguments from which these defined actions were
removed, insert:

> do(name)

naming the specifigefine containing the actions to be performed
at this point in the processing. (See Fig. 22.)

Other replacement actions can precede and/or followotlttem-

mand. After the defined routine is performed, the program will re-
turn to where theo command was located, and the table processing
will continue from there.

All of the define commands and their replacement actions should

be sequenced together in the table—either betweasrdgme search
command and the firgtoup , or after the lasiroup . If the define

8/1/96

Mod 14 ‘Doing’ Defined Routines and Repeating

Fig. 21. from EXTRAC.CCT

c EXTRAC.CCT Mod 2 13-JUN-89
c Use: for extracting selected SFM elements

c Based on FLAGEM.CCT

c Search for "???" to find sections of the change table

c that you must alter.

b

egin >
store(sp) ' ' nl C SFM terminators
store(BK) ” C for Book name storage
store(CH) 'O’ C Chapter number storage
store(VS) '0’ C Verse number storage
store(num) '1234567890’ C Legit chapter num’s
store(VsDiv) 'abc’ C verse divisions
store(BkMsg) nl 'BOOK: '’ C book name message
store(ChMsg) 'Chap: ’ C chapter message
use(1)

C CCeee
¢ Finds sfm initiators and strips all else.
group(l)
\ > use(2)
" > omit
endfile > endfile

C CCt
¢ ldentify required sfms to be extracted.

¢ Also store book, chapter, and verse for

c reporting (if required).

group(2)
¢ ??7?Insert required sfms here
c '??7?" any(sp) > next
C s > out(BK,CH,VS) 11 ¢ Output found SFM.
ifn(3nums) 11 endif
\" dup use(10)
o 2?7 any(sp) > next
c 297 > out(BK,CH,VS) 11 ¢ Output found SFM.
ifn(3nums) 11 endif
'\ dup use(10))
c '??7?" any(sp) > next
C s > out(BK,CH,VS) 11 ¢ Output found SFM.
ifn(3nums) 11 endif
\" dup use(10) Y,
c If \s is extracted, protect \st!
'st’ > omit use(1)
's’ any(sp) > next
s’ > out(BK,CH,VS) 11

ifn(3nums) 11 endif
\" dup use(10)

¢ Store book, chapter, verse number.
'c’ any(sp) > next ¢ Stores chapter number.
'c’ > store(VS) '0’ endstore ¢ Zero out vs num.
clear(CH,VS,3nums)
store(CH) use(3) ¢ Begin storing chp num.

8/1/96

Page 103

Page 104

International Publishing Services PAD-CCP

Fig. 22. EXTRAC.CCT

c EXTRAC.CCT Mod 2 13-JUN-89
c Use: for extracting selected SFM elements

c Based on FLAGEM.CCT

c Search for "???" to find sections of the change table

c that you must alter.

b

egin >
store(sp) ' ' nl C SFM terminators
store(BK) ” C for Book name storage
store(CH) 'O’ C Chapter number storage
store(VS) '0’ C Verse number storage
store(num) '1234567890’ C Legit chapter num’s
store(VsDiv) 'abc’ C verse divisions
store(BkMsg) nl 'BOOK: '’ C book name message
store(ChMsg) 'Chap: ’ C chapter message
use(1)

¢ Outputs extracted element.
efine(Extract) >
out(BK,CH,VS) 11
ifn(3nums) 11 endif
\" dup use(10)

C CC
¢ Finds sfm initiators and strips all else.

group(l
v > use(2)

" > omit

endfile > endfile

C CCee
c Identify required sfms to be extracted.

¢ Also store book, chapter, and verse for

¢ reporting (if required).

group(2)
¢ ???Insert required sfms here
o '??7? any(sp) > next
c 7?7 > do(¢ Output found SFM.
c '?2??" any(sp) > next
c 7?7 > do(¢ Output found SFM.
c '??7?" any(sp) > next
c 277 > do(¢ Output found SFM.
c If \s is extracted, protect \st!
'st’ > omit use(1)
's’ any(sp) > next

¢ Store book, chapter, verse number.
'c’ any(sp) > next ¢ Stores chapter number.
'C > store(VS) '0’ endstore ¢ Zero out vs num.
clear(CH,VS,3nums)
store(CH) use(3) ¢ Begin storing chp num.

(continued on next page)

8/1/96

Mod 14 ‘Doing’ Defined Routines and Repeating

Fig. 22. EXTRAC.CCT continued

'id” any(sp) > next

id’ > ¢ Strip "\id"
store(BK) fwd(3) ¢ Stores book name.

endstore

wrstore(BkMsg) ¢ Display book name.
wrstore(BK) write nl
out(BK) ¢ 1st 3 ltrs of name
append(BK) '’ endstore ¢ Space after bk
store(CH,VS) "0’ endstore

use(10) ¢ Output id line.
v any(sp) > next ¢ Stores verse number
vV’ > clear(VS) store(VS) use(4)
" > omit use(1) ¢ SFM not requested

C CCe
¢ Finish storing the chapter number.

group(3)
any(num) > dup ¢ Dup numbers.
if(CH) set(3nums) endif
set(CH)

any(sp) > endstore wrstore(ChMsg) c Display current
wrstore(CH) write nl ¢ chapter number.
append(CH) " endstore ¢ Add a colon after
¢ chapter number.
" use(1)

C CCe
¢ Finish storing the verse number.

group(4)
any(VsDiv) > dup ¢ Verse division!
> next ¢ Verse bridge.
> dup
any(num) > dup
if(VS,CH) set(3nums)
endif
set(CH,VS)

any(sp) > endstore " use(1)

C CCeee
¢ Output the requested element.

group(10)
any(sp) '\’ > next
\ > nl use(2)

routines are short and aid significantly in understanding what the

table is about, it would be best to put them aftebthe entry. If
they are lengthy, mundane routines such as report writing, they
would best be placed at the elthder no conditiorcan they be
placed before thieegin entry.

Sometimes when thegin entry has lengthy commands that do not

8/1/96

Page 105

Page 106 International Publishing Services PAD-CCP

add to the understanding of the table, these commands can be placed
in adefine . Thedefine can then be placed at the end of the table
where it does not hinder the readability of the table. This is done

even when the routine will only be performed once.

For consistency, place alkfine routines together in the table.

Do/define routines can also be nested to a depth of 10. Nesting re-
fers to cases wheredafine contains within its replacement a sub-
sequentio command, as shown in the following example:

EXAMPLE

group(3)

nl"\" > next

"\ > endstore ¢ stop store at end of last element
do(message)
nl "\" back(1)
use(5)

define(message) > do(reference)
out(capture)
define(reference) > out(book, chpt, verse)
" contained "

When the input matches one of the search entrigsup(3) , the
current storing will be ended and the actions defined as ‘message
will be performed. The first action in ‘message’ calls for executing
the actions in ‘reference’, so processing branches tatiris .

Here the contents of ‘book’, ‘chpt’, and ‘verse’ will be sent to out-
put, followed by the sequenteontained " . Processing returns
to the second line akfine(message) and the string stored in stor-
age area ‘capture’ is written to output. Then processing returns to
group(3) and continues with outputting and the backslash, backs
up over the backslash, and changegdap(s)

This can be represented by the following block diagram.

do
define (ref) define
\' (message) (reference)
— group(3)
!\7
group(5) —_—

It is a safe practice to makegin the first command within ae-
fine and makend the last, especially when its corresponding
command appears in the conditional part of any ‘if command.

8/1/96

Mod 14 ‘Doing’ Defined Routines and Repeating Page 107

2. Re-executing a series of replacement commands wittpeat — This re-
placement side command causes the processing flow to go back to
the previousegin in the replacement actions for that search entry:

EXAMPLE
"“\" > do(errmsg)
store(linechars) '0’ endstore
begin ¢ beginning of repeat loop
" incr(linechars) c fill out line with *
ifneq(linechars) "68" repeat
¢ repeat until line filled
endif
end
use(5)

In this example, the replacement actions would be executed in a se-
guential manner until the command is encountered. At the
command, as long as the ‘linechars’ storage area contains a number
not equal to ‘68’, theepeat is executed, and the processing flow

will immediately jump back to the previotsgin and resume se-
guential execution. When ‘68’ is reached in the ‘linechars’ counter,
then therepeat command will not be executed and processing flow
will continue on sequentially.

PRACTICE ACTIVITIES and QUESTIONS

1. LIST the following tables, and answer the associated questions
for each:
a. SEQ.CCT

— How many times igefine(1) executed?
— Why was it made into éefine ?

— When isdefine(99) executed?
— What does it do?

b. FLAGEM.CCT

— Whatdefine s are used; how many table entries cause each
to be performed; and what is the purpose of each?

Define # of do’s Purpose of define

8/1/96

Page 108 International Publishing Services PAD-CCP

C. CSTCHK.CCT
— Are there any nested “do’s”?

— To what depth?

— Define(2) is only one line long. Is that a worth while use
of define, and why?

2. Fig. 23 shows the relevant portionsSMfLENG.CCT. Rewrite the
table (except for comments), placing the initializing of the count-
ers into alefine

8/1/96

Mod 14

‘Doing’ Defined Routines and Repeating

Fig. 23. from WDLENG.CCT

TOO0000O0O00O0OO0

WDLENG.CCT

Assumptions:

Mod 2 15-JUN-90
This table counts letters in words and outputs number

of occurrences of words with 1 character, 2 characters
etc found in the output of the word list program.

1 All references have been deleted from the file .

2 " page headings
3 " reference counts "

4 An id line has been inserted in the file being read.
5 A \p occurs after id line and before first word.

egin > caseless

store(1) 'O’
store(4) 'O’
store(7) 'O’
store(10) 'O’
store(13) 'O’
store(16) '0’
store(19) '0’
store(22) 'O’
store(25) 'O’

store(long) "0’
store(wds) '0’

store(diac) "'~
store(sp) '’
store(ct) 'O’

"o

C COUNTERS FOR WORD LENGTH

store(2) 0’
store(5) 'O’
store(8) 'O’
store(11) 'O’
store(14) 'O’
store(17) 'O’
store(20) 'O’
store(23) 'O’

store(3) 'O’

store(6) 'O’

store(9) 'O’
store(12) 'O’
store(15) 'O’
store(18) '0’
store(21) 'O’
store(24) '0’

¢ Cntr for wds over 26 chars
¢ Total word counter

c diacritics
nl ¢ word enders

c counts characters
endstore clear(1) use(1)

Below is a block diagram @fDLENG.CCT after being modified
in Activity 2 above. Label the empty boxes and the blank under-
score with the appropriate names of groups and defines.

do__ "\id "
l_ nl
I spaceg/
or\p
begin start
space
endfile
do

(Refer to the file on your student disk to
complete this practice activity.)

8/1/96

Page 109

Page 110 International Publishing Services PAD-CCP

READING ASSIGNMENT

CC User’s Guide: 14 define,14 do,23 repeat

EXERCISES

1. On a separate sheet of paper to turn in, draw a block diagram of
7CHAR.CCT, including itsdefine . (Refer to Fig. 7 in Mod 4)

2. Fig. 24 shows an extract of table code. On the same paper used
for Exercise 1, write the entries to consolidate the common com-
mands to aefine . Write both thelefine entries and the entries
from which those commands were taken.

Fig. 24. from VPNAM.CCT

¢ Non indented prose in an introduction.
\im’ any(sp,sp) > next
\im’ any(sp) > next
Aim’ > if(2ndTag) nl nl
else set(2ndTag)
endif

¢ Outline elements in an introduction.
\io”’ > if(2ndTag) nl nl
else set(2ndTag)
endif
'@OUT INT =" set(txt) use(1,10)
\iol’ > if(2ndTag) nl nl
else set(2ndTag)
endif
'@OUT INT 1 =" set(txt) use(1,10)
\io2"’ > if(2ndTag) nl nl
else set(2ndTag)
endif
'@OUT INT 2 =" set(txt) use(1,10)
\io3’ > if(2ndTag) nl nl
else set(2ndTag)
endif
'@OUT INT 3 =" set(txt) use(1,10)

¢ Paragraph in an introduction.

\ip’ any(sp,sp) > next

\ip” any(sp) > next
Aip’ > if(2ndTag) nl nl
else set(2ndTag)

endif

'@PAR INT =" clear(txt) set(int)
use(1,10)

8/1/96

Mod 14 ‘Doing’ Defined Routines and Repeating Page 111

8/1/96

Page 112

International Publishing Services PAD-CCP

Mod 15 Reading from the Keyboard
and Writing to the Screen

COMMANDS/TOPICS COVERED

write read wrstore

OBJECTIVES

At the end of this module, the student will be able to:

» demonstrate an understandingeafd , write , andwrstore by modi-
fying and/or writing tables properly using them;

* modify a table to include the display of book and chapter as the input
is processed.

INSTRUCTION

1. Providing user information on the screen— Thewrite command is
used to send the character string following it to the screen:

"search argument" > write "string"

The character string may only incluedés and characters in delimit-
ers. The string is terminated by any subseqoemmandexcept for
nl orc). Thewrite command does not affect the normal direction
of output (i.e., the output file or storage area).

Thewrite command can be used to provide the user with certain in-
formation, as in the following example:

EXAMPLE (from LONGWD.CCT)
C *hkkkkhkhkkkkkhkkkhkhkkkhkhkhhkhkkkhhkhkkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhhhhkhkkhhhhhkhikikkx

C LONGWD.CCT modified for PAD-CCP, May 1991, by K. Seitz
C -- a table to make list of all words of certain length or

C longer. For use in setting up a hyphenation table.
C kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkkhhhkhhkkkkkkkkkkkkkkkkkkhxkx

begin > store(1) " " nl *,.;;><\|()$#/'0123456789"
endstore
Write N Mxkrkxsk Sk ko ko ko ek ok ke ko ek ko
write nl '* *1

write nl '* This table selects all words in a file of *
write nl '* a certain length or longer. It is helpful *
write nl ™* in deciding which words to hyphenate. Best *
write nl ™* when used on a word-list. *

write nl '* *
erte nl Thkkkkkhkkhkhkhkhhkhhhhkhkhhhhhhhhhhhhhhhhhhhrhhhriik?

8/1/96

Mod 15 Reading from the Keyboard
and Writing to the Screen
2. Constructing an interactive table withwrite andread — Thewrite

command can also be used to ask the user for a keyboard response
which will then be input to the processing byead command. If
storing is in progress, the keyboard response (up to but not including
the<ENTER>) will be sent to the storage area; otherwise, it is sent di-
rectly to the output file.

EXAMPLE 1 (from LONGWD.CCT)

C kkkkkkkkkkkkkkkhkkkkkkkkkkkhhkkkhkkkkhkkkhkkhkkkkhkkkkkkhkkkhkkkx

C LONGWD.CCT maodified for PAD-CCP, May 1991, by K. Seitz
C -- a table to make list of all words of certain length or
C longer. For use in setting up a hyphenation table.

C *% *% * *k% * * * *%k% * *% *k% *
begin > store(1) " " nl ",.;;><\|()$#/'0123456789"
endstore
erte nl Thkkkkkkkkhkkkkkhkkkhkkhkhkkkhkhkhkhkkkhkkhkhhkhkhhkhkhkhkhhhhkkikhkhkhk?!
write nl '* ®

write nl ™* This table selects all words in a file of *
write nl '* a certain length or longer. It is helpful *
write nl '* in deciding which words to hyphenate. Best *
write nl ™* when used on a word-list. *
write nl '* *
Write n| rkkkkokkkoottkkskkokokokokokokototookkokokokokook
write nl nl’'ENTER LENGTH OF WORDS’
write '(IN NUMBER OF CHARACTERS) DESIRED:’
store(2) read endstore
store(3) '0’ endstore
store(5) 'abcdefghijkimnopgrstuvwxyz’
'ABCDEFGHIJKLMNOPQRSTUVWXYZ’ endstore

group(1)
any(5) > store(4) dup incr(3)
use(10)
any(1) >
" > " fwd(1)
endfile > endfile
group(10)
" > dup fwd(1) incr(3)
ifeq(3) cont(2)
use(20)
endif
any(1) > store(3)'0’ endstore
use(1)
group(20)
" > dup fwd(1)

any(1l) > endstore out(4) nl
store(3) '0" use(1)

8/1/96

Page 113

Page 114 International Publishing Services PAD-CCP

EXAMPLE 2 (from WRDLST.CCT)

C CCC
¢ CREATE an id line by asking for
c a response from the keyboard.
group(1)
o> "id"
write nl
"What goes into the id line?" nl
read c This expects a response from the user
use(2)

In the first example, the keyboard response was read into storage
area ‘2’ to be used in future decisions/changes in the table. In the sec-
ond example the keyboard input was not needed for the table proc-
essing and went directly to the output file.

(Theread command causes the processing to halt untéshaER>
key is pressed.)

3. Writing storage area contents to the screen witivrstore(name) — An-
other helpful command for outputting information to the screen is
wrstore(name) . It causes the contents of the named storage area to
be written to the screen.

EXAMPLE (from 7CHAR.CCT)

C/\/\/\/\I\/\/\/\/\/\I\I\/\/\/\/\/\/\/\/\/\I\/\

¢ OUTPUT THE FINAL REPORT
¢ TO THE FILE AND THE SCREEN.
define(Rep) >
nl out(TotWds) " total words"
nl out(DelWds) " deleted words (less than 7 chars)"
nl out(RetWds) " retained words (7 + chars)"

endfile
write nl wrstore(TotWds) write " total words" nl
wrstore(DelWds)

write " deleted words (less than 7 chars)" nl
wrstore(RetWds) write " retained words (7 + chars)" nl

The first half of the aboveefine outputs the final report to the out-
put file. Then thewrite andwrstore commands put the same infor-
mation to the screen for immediate access. Noticevthiate is a
command in itself. If it follows arite command, thatrite com-
mand is terminated and must be re-issued to output additional infor-
mation to the screen.

4. Usingwrite/wrstore to display on screen the extent of progress—
When a complete New Testament or Bible is inputdothe proc-
essing can take awhile. It is sometimes reassuring to display on

8/1/96

Mod 15 Reading from the Keyboard
and Writing to the Screen Page 115

screen the book and chapter number currently being processed. This
at least lets you know that the processing is progressing and is not
hung in a loop (such as the one cautioned about in Mod 8 involving
the null search argument). The example below shows one way that
the book and chapter can be written to the screen.

EXAMPLE

begin > store(bk) ™ c for book name
store(bkmsg) nl "Book: " ¢ book name message
store(ch) "0" ¢ chapter no. storage

store(chmsg) d27 "[40D" d27 "[11C" "Chap: "

¢ chapter message
store(chtab) " " c¢ overwrite spurious chars
endstore

group(2)

"\id" > store(bk) fwd(3) endstore c store book name
wrstore(bkmsg) wrstore(bk) c write to screen

"“\c" > store(ch) use(5)

group(5)

any(num) > dup

any(sp) > endstore
wrstore(chmsg)
wrstore(ch)
wrstore(chtab)

This example only shows those entries necessary for the screen dis-
play. These, of course, would be combined with the entries for the
major purpose of the table. There are two things worth pointing out
in this example:

a. The string stored in ‘chmsg’ in thegin is a video screen ‘es-
cape’ sequence that causes the chapter numbers to overlay each
other when they are written to the screen rather than appearing
side by side. The codes used are specific to certain video screens.
Different video screens may require different codes. (Remember,
"d27" in CC, as seen in this example, means ‘decimal 27’, which
Is the escape character.)

b. The fixed contents of storage areas ‘bkmsg’, ‘chmsg’, and ‘chtab’
could have been performed as strings followifigzg com-
mands withingroup(2) and(5) . One reason for putting them
into storage areas following thegin statement is to make them
more accessible in case they need to be modified.

8/1/96

Page 116 International Publishing Services PAD-CCP

PRACTICE ACTIVITIES and QUESTIONS

1. Write a table that would ask the user for his name, and then re-
spond to the screen with:

Hi, (name)! You have successfully completed
this activity. Congratulations!!

Sincecc requires an input file, write this table so the message
will print regardless what the data says (try using a null match).
Also be sure to provide for a way to end the program after print-
ing the message once.

2. Assume that a storage area ‘count’ contains the number of verses
found in a file. Write a command that would output the message
"There were verses found" to the screen with the appro-
priate number being placed in the blank.

READING ASSIGNMENT

CC User’s Guide: 23 read,26 write, 26 wrstore

EXERCISES

1. Write a table that will:
a. ask the user for tl&=m used for chapter numbers and store it;

b. ask for thesFM used for section heads and store it;

c. read the input filEMLK.SFM, counting the number of chapters
and section heads; and

d. output a message both to the screen and in the output file giv-
ing the proper counts of chapter and section Bead. (You
may choose to omit all other text from output or pass it un-

changed to the output.)
LIST the input file to determine how to answer the questions for

8/1/96

Mod 15

Reading from the Keyboard
and Writing to the Screen

SFMs used. After successfully runnigg, print out your table
and hand it in.

. Modify REFIND.CCT(see Fig. 8. Mod 4; also on your disk) to dis-

play the book name and chapter number on the screen as the in-
put file is processed. (You may pattern your modifications from
the example shown in this module if you wish. You may try over-
laying the chapter numbers or display each chapter number on a
new line.)

After successfully runningC usingeMLK.SFM as your input file,
print out your table and hand it in.

. Runcc using the table you created in question 1 of the Practice

Activities section above. Usyinput file.

8/1/96

Page 117

Page 118 International Publishing Services PAD-CCP

Mod 16 Calculating with CC

COMMANDS/TOPICS COVERED

add mul mod
sub div
OBJECTIVES

At the end of this module, the student will be able to:

* demonstrate an understandingaéd, sub, mul, div , andmod by ana-
lyzing table logic and providing the results of table entries.

INSTRUCTION

Commands are available for adding, subtracting, multiplying, dividing,
and finding the remainder after a division. These all involve storage
areas and are replacement side actions. They are not frequently used in
publishing preparation, but are quite useful when mathematical calcula-
tions are necessary.

1. add(storel) "number" — To the number stored in ‘storel’ add
the number represented by the string ‘number’, placing the result in
storage area ‘storel’.

2. sub(storel) "number" — From the number stored in ‘storel’ sub-
tract the number represented by the string ‘number’, placing the re-
sult in storage area ‘storel’.

3. mul(storel) "number" — Multiply the number stored in ‘storel’
by the number represented by the string ‘number’, placing the result
in storage area ‘storel’.

4. div(storel) "number" — Divide the number stored in ‘storel’ by
the number represented by the string ‘number’, placing the whole-
number portion of the result (quotient) in storage area ‘storel’, and
discarding the remainder.

5. mod(storel) "number" — This is the same asda operation ex-
cept that theemainderportion of the quotient is placed in ‘storel’,
and the whole-number portion is discarded.

Thecont(name) command could be used in placerainber’ with
any of the math commands.

8/1/96

Mod 16 Calculating with CC Page 119

EXAMPLE

endfile > store(total) outs(SFM_errs) endstore
add(total) cont(ortho_errs)
add(total) cont(quote_errs)
"Total errors: " out(total) nl
"Orthographic errors: " out(ortho_errs) nl
"Quote system errors: " out(quote_errs) nl
"SFM errors: " out(SFM_errs) nl
store(misused) outs(SFM_errs) endstore
sub(misused) cont(unident)
"Unidentified SFMs: " out(unident) nl
"Misused SFMs: " out(misused) nl
store(%calc) outs(SFM_errs) endstore
mul(%calc) "100"
div(%calc) cont(total)
"SFM errors (as percent of total): "
out(%calc) "%" nl
endfile

PRACTICE ACTIVITIES and QUESTIONS

1. Write the output from the above examplsrf1_errs = 10,
ortho_errs = 7, quote_errs = 3, and unident = 4.

2. Write the additional entries that would be needed to calculate and
output a message giving the percentageref errs caused by un-
identified SFMs.

READING ASSIGNMENT
CC User’s Guide: 11 add,14 div, 20 mod,21 mul, 25 sub,44-45Arith. Cmds.

8/1/96

