

Building Apps

 2

Dictionary App Builder: Building Apps

© 2023, SIL International

Last updated: 19 July 2023

You are free to print this manual for personal use and for training workshops.

The latest version is available at
http://software.sil.org/dictionaryappbuilder/resources/

and on the Help menu of Dictionary App Builder.

http://software.sil.org/dictionaryappbuilder/resources/

 3

Contents

1. Preparing content for your app ... 5

1.1. Preparing your lexicon file .. 5

1.2. Preparing images .. 5

1.3. Preparing audio ... 5

2. How to build your first app ... 6

3. Installing the app on your phone ... 8

4. App Creation Basics .. 12

4.1. How should I choose the app package name? ... 12

4.2. Do I have to create a new keystore for each app, or can I reuse the same
keystore for several of my apps? .. 13

4.3. Can I build apps when I do not have internet access? 13

4.4. Can I build an app from the command line? .. 13

5. Fonts .. 15

5.1. What is Grandroid? ... 15

5.2. When do I need to include the Grandroid libraries? .. 15

5.3. What is GeckoView? ... 16

6. Audio ... 17

6.1. How do I distribute the audio MP3 files with the app? 17

7. Navigation Drawer .. 19

8. Analytics ... 20

8.1. Firebase Analytics ... 20

8.2. Amplitude Analytics .. 21

8.3. S3 Digest Analytics .. 22

8.4. Details on S3 Digest Analytics ... 23

9. Registration Screen ... 24

9.1. Setting up the Registration Screen in Dictionary App Builder 24

9.2. Setting up the database in the Google Firebase console 25

10. Distribution .. 28

 4

 5

1. Preparing content for your app
Before you build an app with Dictionary App Builder (DAB), you need to get your
content (lexicon file, images and audio) into formats that DAB can handle.

1.1. Preparing your lexicon file
DAB can read two types of lexicon database file: LIFT and XHTML.

• Lexical Interchange FormaT (LIFT)
LIFT files can be exported from any of the following SIL dictionary programs:
FieldWorks Language Explorer (FLEx), WeSay or Lexique Pro.

In FLEx, select File Export, then choose 'Full Lexicon (LIFT)'.

• XHTML

DAB supports XHTML files which have been exported from FieldWorks Language
Explorer (FLEx). XHTML files generated from other sources are not supported.

In FLEx, select File Export, then choose 'Configured Dictionary (XHTML)'.

You will also need to export a Reversal XHTML file for each index language. To do
this, select File Export, then choose 'Reversal Index (XHTML)'.

For more information about SIL dictionary software, please refer to the following
websites:

LIFT https://code.google.com/p/lift-standard/
FLEx http://fieldworks.sil.org/flex/
WeSay http://wesay.palaso.org/
Lexique Pro http://lexiquepro.com/

1.2. Preparing images
Images should be in JPEG or PNG format.

Keep the image size small enough so that they display well on a small screen and will
not make the app size too large. DAB will allow you to resize the images after you have
added them to the app project.

1.3. Preparing audio
If you want to include audio files in your app, these need to be in MP3, WAV or 3GP
audio format.

Keep the audio files at a size where the quality is good enough for a phone and where
the file size is not too large.

https://code.google.com/p/lift-standard/
http://fieldworks.sil.org/flex/
http://wesay.palaso.org/
http://lexiquepro.com/

 6

2. How to build your first app
To build your first app with Dictionary App Builder:

1. Launch Dictionary App Builder from its icon on the desktop.

2. Click New App on the toolbar. The New App wizard will appear.

3. On the first page of the wizard titled Lexicon Database, click Browse… and select

the lexicon data file you want to display in the app.

Click Next to move to the next page.

4. On the next page of the wizard titled Lexicon Details, you will see the number of
entries and the languages found in the lexicon.

Click Next to move to the next page.

5. If your lexical database is an XHTML file, the next page of the wizard will be titled
Reversal Indexes. Click Add Reversal Index File… and select one or more
reversal index files that you have exported from FLEx.

Click Next to move to the next page.

6. On the page of the wizard titled App Name, specify the App Name, such as
“Dogon Dictionary”, “Mamara Lexicon”, etc.

This is the main title of your app and will be seen by the user. Do not include
underscores or hard to understand abbreviations.

Click Next to move to the next page.

7. On the page of the wizard titled Package, specify the Package Name, a dot-

separated string which uniquely identifies your app.

More details about choosing a good package name can be found in section 4.1.
How should I choose the app package name?

Click Next to move to the next page.

8. On the page of the wizard titled Indexes, select the languages for which you
would like to see an index tab in the app.

Click Next to move to the next page.

9. On the page of the wizard titled Font Handling, you can select Grandroid and/or

Crosswalk if you know that the standard Android components will have trouble
displaying the text correctly (e.g. if it is a complex script). More information on
Grandroid and Crosswalk can be found in the Fonts section of this document.

 7

Click Next to move to the next page.

10. On the page of the wizard titled Fonts, choose the font for each language. You

can either select from the given list of fonts or click Other to specify a different
TrueType font file.

Click Next to move to the next page.

11. On the page of the wizard titled Color Scheme, choose the color scheme for the

app. The color you choose is the one that will be used for the main app bar.
Individual colors for text, titles, links, backgrounds, etc. can be customised later.

Click Next to move to the next page.

12. On the page of the wizard titled Icon, choose the application launcher icon. You

can select one of the images in the table or if you have your own PNG image files
for the icon, click Browse and select them.

Click Next to move to the next page.

13. On the page of the wizard titled Signing, you need to specify the keystore and

alias to use to sign the app. An app must be signed in this way so that it can
installed on an Android device.

If you do not already have a keystore file (which you are unlikely to have if this is
your first time using the program):

i. Click Create KeyStore.

ii. Enter a new filename for the keystore, such as “keystore1” or something

like that. Specify a password. Click Next to continue.

iii. Enter an alias name for a key to create within your new keystore, such as
“key”. Specify a password, which can be the same as the password you
entered on the previous page. Click Next to continue.

iv. On the Certificate Issuer page, provide details of your organisation in at

least one of the fields. Click Next to continue.

v. A new keystore will be created for you. Click Close.

14. Back on the Signing page of the New App wizard, you need to specify the
keystore password, select the alias and enter the alias password (just as you
entered them in the step above).

Click Next to continue.

 8

15. On the page of the wizard titled Project, you can enter modify the project name
and add an optional description of the app project. Neither of these will be
visible to the user of your app. They are just for your own use and might help
you distinguish between multiple app projects.

Click Next to continue. The New App wizard will close and the app definition will
be added to the tree view on the left of the screen.

16. Take a look at each of the app configuration pages by selecting them in the tree

view on the left. Look in each of the tabs on each page to verify that you have
the settings you want. You can always go back to them later to change them if
you find you need to make modifications to fonts, colors, styles, etc.

17. When you have finished configuring the app, click the Build Android App button

on the toolbar at the top of the screen.

If something is not configured correctly for the build to work, you will be notified
of this.

18. A black command box will appear. Wait about a minute while the app is

compiled.

The first time the build process is run, the compiler needs to connect to the
internet to download some files. After this, subsequent app builds will not
require internet access. See Tools Settings… Build Settings to turn on
offline mode after the first app build.

19. If the build succeeds, you will have a new APK file – the installation file for an

Android app.

The next section describes how to copy this APK file to your phone and launch the app.

3. Installing the app on your phone

In the above section, you have seen how to compile an Android app. The result is an
APK file, the installation file for an Android app. You now need to copy this APK file to
your phone, install it and launch the app.

Here is how to do this:

1. Connect your Android phone to your computer using a USB data cable.

(Sometimes you get cheap USB cables that can only charge a phone but cannot
transfer data, so make sure you have the right kind of cable.)

 9

2. Ensure that Developer Options USB Debugging is enabled on your phone. By
default, on new phones, Developer Options is turned off. This is how you can
enable it:

i. Open the Settings menu of your phone.

ii. Scroll down to the bottom of the menu and tap on About Phone.

iii. Find the Build Number. This could be on the About Phone page, or under
a sub-menu such as ‘Software Information’.

iv. Tap on the Build Number seven times. As you do this, you will see a
series of messages appearing: “You are now 3 steps away from being a
developer”, “You are now 2 steps away from being a developer”, “You
are now 1 step away from being a developer”, “You are now a
developer!”.

v. Now return to the Configuration menu of your phone. Look for the
Developer Options menu item. You might see Developer Options above
the About Phone menu item. If you do not see it here, it could be in
System settings, under Advanced. Different phones place Developer
Options in different places, so look around your Configuration menu until
you find it.

 10

vi. Tap on Developer Options and ensure that it is turned on.

vii. Scroll down the Developer Options page and find USB Debugging. Enable
this setting.

When you do this, you will probably get a message “Allow USB
Debugging?”. Tap OK.

 11

If you see a message box like this, tap OK:

3. In Dictionary App Builder, click the Install APK button on the toolbar at the top

right of the screen.

A command window will open and the APK file will be copied to your phone,
installed and the app will be launched.

 12

If this does not work, look at the command window to see if there is an error
message. If you see a message such as “No devices/emulators found”, it means
that your phone and computer are not connected correctly or that you have not
enabled USB debugging on your phone.

Note:
Described above is a two-step process: Build App and then Install APK. If you prefer,
you can tell Dictionary App Builder to do this in one step, i.e. for the APK to be installed
and launched automatically after building an app. See Tools Settings… After Build
to enable this feature.

4. App Creation Basics

4.1. How should I choose the app package name?
The standard for an app package name is to begin with the reversed web address of the
publishing organisation, e.g. if it is SIL, the package name could begin with:

org.sil

and will be followed by something identifying the language and type of publication, e.g.

org.sil.cccc.nnnn.lexicon

where ‘cccc’ is the country name and ‘nnnn’ is the language name.

If you work for a university or linguistics organisation, you might have standards to
follow for package names, so please contact your digital publications coordinator for
advice on this.

Once you publish your app on an app store, you cannot change its package name later if
you want users to continue to receive updates. The package name uniquely identifies
the app in the Android world. Those who install the app will be able to find its package
name on their device. It will also appear in the web address for your app if you make it
available on Google Play.

If you are building apps for test purposes on your devices, you can use a package name
beginning with com.example, e.g.

 com.example.test.app123

But remember to change it before you publish the app.

 13

4.2. Do I have to create a new keystore for each app, or can I reuse the same keystore
for several of my apps?

You can use the same keystore and key alias for all or several of your apps.

See here for more details:

http://developer.android.com/tools/publishing/app-signing.html

4.3. Can I build apps when I do not have internet access?
The first time you build an app, you will need to be connected to the internet otherwise
the compiler will fail. After that you can set the 'offline' version in Settings so you can
work offline.

4.4. Can I build an app from the command line?

Yes, Dictionary App Builder has a command line interface which allows you to create a
new app and build it, or load an existing app and build it.

The command line tool is named dab and can be found in the Program Files folder,
usually c:\Program Files (x86)\SIL\Dictionary App Builder.

dab takes the following parameters:

Option Description
-new Create a new app project

-load <project> Load an existing app project

-build Build app project (use with either -new or -load)

-no-save Do not save changes to app (use with -load)

-? Show command line help

-n <app-name> Set app name.
Enclose the name in "double quotes" if it contains spaces.

-p <package-name> Set package name, e.g. com.myorg.language.appname

-i <filename> Include additional parameters file.
Use the full path of the file and enclose it in "double quotes" if there is a
space in the path.

-a <filename> Set about box text, contained in text file.
Use the full path of the file and enclose it in "double quotes" if there is a
space in the path.

http://developer.android.com/tools/publishing/app-signing.html

 14

-f <fontname> Set font name or filename, e.g. "Charis SIL Compact", "c:\fonts\myfont.ttf"
The font name must be one of the items in the list of fonts in the New App
wizard. For other fonts, specify the full path to the font filename.

-g Use Grandroid

-ic <filename> Add launcher icon (one or more .png files).
Use the full path of the files and enclose them in "double quotes" if there
is a space in the path.

-l <lang-code> Set language for menu items and settings, e.g. en, fr, es

-ft <feature=value> Set a feature.

-vc <integer> Set version code, e.g. 1, 2, 3, or +1 to increment the current version code
by 1.

-vn <string> Set version name, e.g. 1.0, 2.1.4, or use +1, +0.1, +0.0.1 to increment the
current value.

-ks <filename> Set keystore filename.
Use the full path of the file and enclose it in "double quotes" if there is a
space in the path.

-ksp <password> Set keystore password

-ka <alias> Set key alias

-kap <password> Set key alias password

-fp <folder=path> Set a folder path, e.g. "app.builder=c:\Dictionary App Builder".

Examples:

dab -load \"My App\" -build

 15

5. Fonts

If you are using a non-Roman script or a Roman script with combining diacritics, some
Android devices will not display your fonts correctly. To overcome these problems, try
using the Grandroid and/or GeckoView libraries.

Library Purpose Android Versions
Supported

Additional
Size

Grandroid Rendering complex fonts and
combining diacritics correctly in
older versions of Android

Android 4.0, 4.1, 4.2, 4.3 200 KB

GeckoView Rendering complex fonts
correctly in most versions of
Android, especially fonts that are
Graphite-enabled

Android 4.1 and above 55 MB

You can configure these on the Fonts Font Handling page.

5.1. What is Grandroid?
Grandroid (Graphite for Android) is a collection of native libraries
from SIL Writing Systems Technology (WSTech). They can be
packaged within the app, enabling older Android devices (versions
4.0 to 4.3) to make use of Graphite font rendering features.

Grandroid is not only about Graphite. It also fixes a few font display problems.

You can find more information about Graphite here:
 http://scripts.sil.org/cms/scripts/page.php?site_id=projects&item_id=graphite_home

You can find more information about Grandroid here:
 https://github.com/silnrsi/grandroid

5.2. When do I need to include the Grandroid libraries?
This will depend on the font and special characters you need to display. The more
complex your script, the more likely you are to need Grandroid support.

Please note that if a font displays correctly on your own phone without Grandroid, it
does not mean it will display correctly on all phones and Android versions. As well as
testing your app on the latest version of Android, it would be a good idea to test it on a
phone running Android 4.2 or 4.3 (which have known font display problems).

http://scripts.sil.org/cms/scripts/page.php?site_id=projects&item_id=graphite_home
https://github.com/silnrsi/grandroid

 16

You will almost certainly need to include the Grandroid libraries:

• If you have a non-Roman script, e.g. Greek, Cyrillic, Armenian, Hebrew, Arabic,
Syriac, Thaana, Devanagari, Grumukhi, Oriya, Tamil, Telugu, Kannada,
Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar, Georgian, Hangul, Ogham,
Runic, Khmer, Ethiopic or NKo.

• If you have a Roman script which makes use of combining diacritics, such as
separate acute accents or tone marks (e.g. ɔ,́ which is composed of two
characters, but not é which is a single character).

You are unlikely to need to use Grandroid:

• If you have a simple Roman script which does not make use of combining
diacritics. So that means a-z, plus other IPA characters such as ɛ, ɔ, ɲ, ŋ, etc. as
long as they are not being combined with tone marks or accents.

If you try and display a complex script without Grandroid, you might find the following
problems:

• The system font being used rather than the font you specify - on Android 4.2 and
4.3 (Jelly Bean).

• Lines with combining diacritics being displayed in the system font, while other
lines are being displayed correctly - on Android 4.2 and 4.3 (Jelly Bean).

• A blank screen where there should be text - on Android 4.2 and 4.3 (Jelly Bean).

5.3. What is GeckoView?
GeckoView is a viewer component from Mozilla that replaces the standard Android
viewer for Android versions 4.1 and above. It can render Graphite fonts correctly.

The required GeckoView library files will add at least 55 MB to your app size, so do not
enable GeckoView unless you know you need it to display your fonts correctly.

You will find that when you build an Android APK with GeckoView, the APK size will be
at least 200 MB larger than without GeckoView. This is because it contains the
GeckoView libraries for four different device architectures (32-bit ARM, 64-bit ARM,
32-bit Intel and 64-bit Intel). In practice, your app users do not need to install such a
large file.

• For online app distribution, you need to upload an AAB file (app bundle) to
Google Play rather than an APK. The AAB file contains all the GeckoView libraries
for all four device architectures, but when a user installs an app from Google
Play, Google will create a tailored APK for them, with just the libraries and
components their phone needs. The AAB file might be over 300 MB, but the
actual size of the app for any user will be much smaller.

• For offline app distribution, you can ask for Dictionary App Builder to create
multiple APKs, one for each device architecture. Do this on the App APK tab.
Each of these APKs will be significantly smaller (around 55 MB extra for

 17

GeckoView). You just need to choose the right one(s) to distribute, according to
the types of phones people have. Many of the phones today will use the 64-bit
ARM APK. Otherwise, the 32-bit ARM APK is used for most older phones. Intel
phones are less common, but it will depend on the phones being sold in your
country.

6. Audio

6.1. How do I distribute the audio MP3 files with the app?

There are 3 ways of including audio files in your app: assets, external folder or internet
download. You can use a single audio source for all of the files in an app or you can
combine two or more audio sources in an app.

To specify the audio source(s) in Dictionary App Builder, you need to visit the following
two tabs on the Audio page. This page can be found in the apps tree view just under
Analytics on the top level of app pages.

1. The Audio Files tab, which lists the audio files with their corresponding audio
source.

To change the audio source for a file or files, select the rows you want to change
and select Change Audio Source.

2. The Audio Source tab, which defines the available audio sources.

You can modify, add and remove audio sources here.

The follow sections describe the different audio source types.

1. Assets
The mp3 files will be packaged inside the apk file for the app. This is the easiest method
for a few files (e.g. one book) and requires no permissions. But be beware that the apk
will get very large if you have several books of audio. The maximum size of an apk that
can be uploaded to the Google Play store is 100 MB.

 18

2. External Folder
No audio files are packaged within the app, so the apk is small. The app will look in a
specified SD card folder to find the audio mp3 files it needs. If you are distributing the
app via SD card, you include the folder of audio files on the SD card together with the
apk. This method requires the 'Read external storage' permission but not internet
access.

You can place the mp3 files inside sub-folders and sub-sub-folders in the specified SD
card folder, using any folder names you choose. Alternatively, you can place all the
audio files in a single folder without using any sub folders.

If the app does not find audio files in the specified folder or its sub-folders, it will also
search the other folders on the device to see if it can find them there. For example, if
the specified folder name is ‘Audio 123’ but the files are located in the ‘Audio 456’
folder instead, the app should find them. Once it has found a folder with a needed
audio file, it will keep a note of it so it knows where to look next time.

3. Internet Download
Like method 2, no audio files are packaged within the app, so the apk is small. The app
will look in a specified SD card folder to find the mp3 files it needs. If it doesn't find
them there, it will look in all the other folders on the device. If it still cannot find them,
the app can download the files one by one when it needs them from a website of your
choice. This method requires the 'Read external storage', 'Write external storage',
'Connection state' and 'Internet' permissions.

Audio filenames
The internet download works best if your audio filenames do not include any spaces. A
filename of the form “african-elephant.mp3” is better than “african elephant.mp3”.

Http or https
The download manager in Android 2.3 (Gingerbread) cannot handle downloads from
secure https addresses, so if you want to support these phones, use an http:// address
instead of https://.

Audio file hosting
Recommended storage locations for the files on the internet include:

1. A language-specific website

If you have a language-specific website for making resources available for
download, you could place the audio files in a folder on the website.

For example, if your website is called ‘www.ourlanguage.org’, you could upload
the audio files to a folder called ‘audio’. The http address for your audio files
would then be: http://www.ourlanguage.org/audio

Your website administrator should be able to help you do this.

 19

2. Cloud Storage Services

Amazon S3 (Simple Storage Service): http://aws.amazon.com/s3/
Backblaze B2 Cloud Storage: https://www.backblaze.com/b2/cloud-storage.html
Google Cloud Storage: https://cloud.google.com/storage/

These cloud storage services are designed for fast, reliable and secure online
storage. Once you have created an account, you create a 'bucket' in which to
place your mp3 files. When you add the files, you need to make them public and
make a note of the web address link to use to access them, e.g.
http://s3.amazonaws.com/yourbucketname

You will get some months of free storage before there is a charge according to
the bandwidth used, i.e. how many MB of audio users download. It might be
easiest to organise this kind of cloud storage at an organisational level rather
than creating a new account for each language.

7. Navigation Drawer

You can customise the image that appears at the top of the navigation drawer. It can be
a photo, your organisation’s logo or any relevant graphic design.

Specify a landscape image file on the Appearance Graphics Navigation Drawer
page.

http://aws.amazon.com/s3/
https://www.backblaze.com/b2/cloud-storage.html
https://cloud.google.com/storage/

 20

8. Analytics

If you enable Analytics, the app will connect to the internet from time to time to send
app usage information to one or more analytics accounts. This will give you an idea of
the extent to which people are interacting with the app.

The information sent will include the model of the device (such as ‘Google Nexus 7’,
‘Samsung Galaxy S4’), the Android version (such as ‘4.2’), the mobile network provider
and an approximate location (city/country). No personal information is included.

You can configure your app to send usage data to one or more of the following analytics
engines:

Firebase Analytics Sends data to a Google Firebase Analytics
account of your choice.

Amplitude Analytics Sends data to an Amplitude account of your
choice.

S3 Digest Analytics Sends a digest of analytics data to an Amazon
S3 Bucket of your choice.

To set up analytics:

1. Go to the Data & Analytics Analytics page for the app.

2. Select Enable Analytics.

3. Click Add Analytics Account…

4. Choose an account type and enter your analytics account information.

• For Firebase Analytics, you will need a google-services.json configuration
file for your account.

• For Amplitude Analytics, you will need an API Key

• For S3 Digest Analytics, you will need an S3 Bucket ID and an Identity Pool
ID.

8.1. Firebase Analytics
To sign up for Firebase Analytics, ensure you have a Google account.

You will need to:

1. Go to the Google Firebase website at https://firebase.google.com/ and ensure
you are signed in with your Google account.

2. Click Add project to create a Firebase project for this app.

3. In Step 1, you will need to give your new project a Project name.

https://firebase.google.com/

 21

4. In Step 2, titled Google Analytics for your Firebase project, select Set up Google
Analytics for my project and press Continue.

5. In Step 3, titled Configure Google Analytics, click on the drop-down box and
choose Create a new account. Give it a name, which can be the same as your
Firebase project name.

6. Check the boxes to confirm that you accept the analytics and data protection
terms. Click Create project and wait a few seconds for the project to be created.

7. Click the Settings button (a cog wheel icon near the top) and select Project
settings.

8. On the General tab of the Settings, scroll down to the My apps section and click
the Android app icon.

9. On the Add Firebase to your Android app page, enter your app package name
and click Register app.

10. Download the config file, google-services.json. That is all you need from the app
registration. You can ignore the information on the rest of the screens and
return to Settings.

11. Go to the App Firebase page in Dictionary App Builder.

12. Select Firebase Analytics as one of the features to use in the app.

13. At the bottom of the page, click the Browse button and find the google-
services.json config file that you have just downloaded from the Firebase
console.

8.2. Amplitude Analytics
To use Amplitude analytics, you will need to create an account. Go to:

https://amplitude.com

You will need to:

1. Click Sign Up at the top right of the screen and create an account. You will
receive an email to finish activating your account. Copy the link to your browser
and go to the page and complete the activation process.

2. You will be prompted to create a new organization. You can do that to invite
team members to join your organization and access the data. You will also be
prompted for some additional information.

3. Click Create Project, enter the project name and click Create. There will be a
project for each individual app.

https://amplitude.com/

 22

4. Click Projects on the left of the screen. This will show the list of projects and the
properties including a long string of hexadecimal characters under the label API
Key.

5. Highlight and copy this string into the API Key field in Dictionary App Builder.

8.3. S3 Digest Analytics
To use S3 Digest Analytics, ensure you have admin permissions to an Amazon AWS
account, and go to:

https://aws.amazon.com/console/

You will need to:

1. Click Sign In to the Console at the top right of the screen.

2. Create an S3 Bucket.

a. Go to the S3 Service and click Create bucket, enter a Bucket name, select
a Region near where the app will be distributed, and click Next.

b. On the Set properties and Set permissions steps, use the defaults and
click Next.

c. Review the configuration and click Create bucket.

d. Copy the Bucket name into the S3 Bucket ID field in Dictionary App
Builder.

3. Create a Federated Identity.

a. Go to the Cognito Service and click Manage Federated Identitites. The
first time you use this service it will start creating an identity pool for
you. If the AWS account already has identity pools, then it will show a
grid of existing one. If this is the case then click Create new identity pool.

b. Enter an Identity pool name, click Enable access to unauthenticated
identities (which allows users of the app to submit analytics without
logging into some service), and click Create.

c. Click Show Details to see the Role Name for the unauthenticated
identities (in the next step, we will give them permission to put objects in
the bucket created in the previous step). Click Allow.

d. Copy the Identity pool ID value inside the quotes in the Get AWS
Credentials section of the Sample code page shown after completion of
the previous step. Copy this string into the Identity Pool ID field in
Dictionary App Builder.

4. Give permission to put data into the S3 Bucket.

a. Go to the IAM Service and click Roles category.

b. Click on the Role created in step #3 (e.g.
Cognito_<IdentityPoolName>Unauth_Role).

https://aws.amazon.com/console/

 23

c. Click Add inline policy, click Service and choose S3.

d. Click Actions, type in PutObject to search for actions, and check
PutObject to select that action.

e. Click Resources, use default Specific, click on Add ARN link, enter the
Bucket name from step #1 into the Bucket name field, click the Any
checkbox at the end of the Object name field, and click Add.

f. Click Review policy, enter a name in the Name field, and click Create
policy.

8.4. Details on S3 Digest Analytics
S3 Digest Analytics will send a small daily digest (about 300 bytes for each day the app is
used) of compressed, completely anonymous data (no personal, phone, or GPS location
information) via an encrypted transport (https) to an Amazon data center, when the
device is connected to the Internet (via cell or WIFI) while the app is running. You are
responsible for hosting the Amazon S3 Bucket and processing the received data.

Files are uploaded to the S3 Bucket and in a sub-folder based on the format (e.g. the
current format is f1) and stored with a unique filename using a randomly generated
GUID as the basename. We are working to package a Splunk configuration so that you
can deploy your own server to analyze the data.

S3 Digest Analytics uses a JSON payload format. A complete sample data payload is
below:

{"startTime":"20180306T0835Z","period":1440,"id":"12db7e3f-93d9-4370-b12b-
fe048804e4f5","package":"org.sil.dictionary.cuk","version_name":"1.0.1","s
essions":1,"sessionMins":21,"shares":3}

This sample is comprised of the following fields:

• One day of activity (1440 minutes), starting on 2018-03-06.

• The id is a GUID which was randomly generated on the phone when the app was
first launched, enabling determination of how many unique installations of the
app are in use (but no user-identifying information).

• Package and version indicate which app is in use.

• This report was for a single 21-minute session. This (and other) values would be
incremented if the app had been used multiple times within the reporting
period.

• The user pressed share in the app 3 times.

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

 24

9. Registration Screen

You can define a registration screen to be shown when a user launches the app for the
first time. This allows you to collect contact information, for example to connect people
with a WhatsApp group to discuss dictionary entries.

To set up a registration screen, you need to do some configuration work in two places:

• within Dictionary App Builder, and
• in the Google Firebase console.

9.1. Setting up the Registration Screen in Dictionary App Builder

To set up the registration screen within the app builder:

1. Go to the App Security page.

2. Select Require each user to register with their details when they first use the
app.

3. Click the Configure Registration button.

4. Follow the instructions in each of the tabs in the Configure Registration dialog:

i. Registration Screen: specify the title and text to show on the registration
screen.

ii. User Details: specify the input fields (such as name, telephone number,
email adress), that you will ask the user to provide. You can specify which
of these are required and which are optional.

 25

iii. Skip Registration: choose whether you want the user to be able to skip the
registration process. If they do press the Skip button, specify when you
want the app to ask them again.

iv. Registration Completed: specify the title and text to be displayed on the
screen which is shown to the user after they have successfully registered.

v. Image: specify an image to be displayed at the top of the screen, such as
your organisation’s logo or the app icon.

vi. Database: choose whether the user data will be stored in an app-specific
path in the database (which is useful if you use the same database for
several apps), or at the top level of the database (which is fine if you have
just one app). More information about configuring your database can be
found in the following section.

vii. Styles: you can adjust the styling of the screens by adjusting the style
declarations.

Use the Test buttons on the Registration Screen and Registration Completed
tabs to preview the screens in a browser.

5. Click OK when you are finished in the dialog.

9.2. Setting up the database in the Google Firebase console

To set up the database, which will contain the registered users’ information, you need
to add Firebase to your app, create a database, set up authentication and configure
rules.

Add Firebase to your app

To add Firebase to your app:

1. Go to the Google Firebase website at https://firebase.google.com/ and ensure
you are signed in with your Google account.

2. Create a Firebase project if you do not already have one for this app.

3. Click the Settings button (a cog wheel icon near the top) and select Project
settings.

4. On the General tab of the Settings, scroll down to the My apps section and click
the Android app icon.

https://firebase.google.com/

 26

5. On the Add Firebase to your Android app page, enter your app package name
and click Register app.

6. Download the config file, google-services.json. That is all you need from the app
registration. You can ignore the information on the rest of the screens and
return to Settings.

7. Go to the Data & Analytics Firebase page in Dictionary App Builder.

8. Select Firebase Realtime Database as one of the features to use in the app.

9. On the Firebase Configuration Android tab, click the Browse button and find
the google-services.json config file that you have just downloaded from the
Firebase console.

Create a Database

To create a Realtime database:

1. In your Firebase project console, select Database from the menu on the left of
the screen.

2. Scroll down the screen for the section titled Or choose Realtime Database and
click the Create database button.

3. Choose Start in locked mode as the Security rules and click Enable.

Set up Authentication

On the Authentication page of the Firebase console, enable two authentication types
on the Sign-in method tab:

1. Email/Password (this is used when viewing registered users in a web browser)
2. Anonymous (this is used during user registration in the app)

Configure Rules

Rules are required to tell Firebase who will have access rights to read and write to the
database. To configure the database rules:

1. In your Firebase project console, select Realtime Database from the menu on
the left of the screen.

2. Select the Rules tab.

3. The rules you specify will depend on the path you have chosen on the Database
tab in the Registration configuration.

If you have chosen to store the user information in an app-specific location, e.g.
“/apps/your-app-package-name/users/”, the rules need to be as follows:

 27

{
 "rules": {
 "apps": {
 "$package": {
 "users": {
 "$uid": {
 ".read": false,
 ".write": "$uid === auth.uid"
 }
 }
 }
 }
 }
}

If you have chosen to store the user information at the top level of the
database, e.g. “/users/”, the rules need to be as follows:

{
 "rules": {
 "users": {
 "$uid": {
 ".read": false,
 ".write": "$uid === auth.uid"
 }
 }
 }
}

These rules give write access only to the user who is making the registration. No
one will have read access (except for you when you view the database from the
Firebase console).

Tip: Make sure you copy the rules exactly. An easy way to get the rules you need
is to click the Database Rules button on the Database tab. This will give you the
rules you can copy.

4. Click Publish to confirm your changes.

 28

Rules FAQ

Q. If we want an administrator to have read access to the Registered users to display
in a web browser, what rule do we use?

If you want to give an administrator read access to the data, to be displayed in a web
browser (See Configure Registration User Details View Data), here is the rule to
use:

{
 "rules": {
 "apps": {
 "$package": {
 "users": {
 "$uid": {
 ".read": "(auth != null) && (auth.token.email
== 'me@abcd.com')",
 ".write": "$uid === auth.uid"
 }
 }
 }
 }
 }
}

(where me@abcd.com is a user added on the Authentication page)

The above rules assume that you want to store the user information in an app-specific
location. If you have chosen the top-level location, you need to remove the “apps” and
“$package” elements above.

10. Distribution
Android apps built with Dictionary App Builder can be published on the Google Play
store, distributed on memory cards, shared by Bluetooth or Wi-Fi transfer, uploaded to
websites, or sent out by email.

For more information, please see the user manual: Distributing Apps.

	1. Preparing content for your app
	1.1. Preparing your lexicon file
	1.2. Preparing images
	1.3. Preparing audio

	2. How to build your first app
	3. Installing the app on your phone
	4. App Creation Basics
	4.1. How should I choose the app package name?
	4.2. Do I have to create a new keystore for each app, or can I reuse the same keystore for several of my apps?
	4.3. Can I build apps when I do not have internet access?
	4.4. Can I build an app from the command line?

	5. Fonts
	5.1. What is Grandroid?
	5.2. When do I need to include the Grandroid libraries?
	5.3. What is GeckoView?

	6. Audio
	6.1. How do I distribute the audio MP3 files with the app?

	7. Navigation Drawer
	8. Analytics
	8.1. Firebase Analytics
	8.2. Amplitude Analytics
	8.3. S3 Digest Analytics
	8.4. Details on S3 Digest Analytics

	9. Registration Screen
	9.1. Setting up the Registration Screen in Dictionary App Builder
	9.2. Setting up the database in the Google Firebase console

	10. Distribution

