
7/16/2015 1

FieldWorks 7 XML model
Ken Zook

July 16, 2015

Contents
1 XML introduction ... 1
2 FieldWorks XML model ... 5

2.1 Basic properties .. 5
2.1.1 Strings ... 5

2.1.1.1 Unicode or BigUnicode ... 5

2.1.1.2 String or BigString... 6
2.1.1.3 MultiUnicode or MultiBigUnicode ... 7

2.1.1.4 MultiString or MultiBigString ... 7

2.1.2 Other basic properties ... 8
2.2 Writing systems .. 8
2.3 Class instances.. 9

2.4 Owning properties .. 9
2.5 Reference properties ... 10
2.6 Top level XML ... 11

2.7 Custom fields.. 12
3 Source of FieldWorks XML files ... 14

4 FDOBrowser ... 15
5 Data protection, and recovering from a failure ... 16

5.1 Non-shared ... 16

5.2 Shared ... 17

6 Modifying data in FieldWorks XML files .. 17
6.1 Making spelling/orthographic changes in one writing system 17
6.2 Converting bar codes to formatted text .. 18

1 XML introduction

XML (Extensible Markup Language) is a standard file format for storing data along with its

semantic markup. The official description is found at www.w3.org/TR/REC-xml. It provides

numerous advantages over SFM including attributes and clear structural markers. Starting with a

simple SFM dictionary entry:

\lx abal

\ps adj

\gl turbulent

\de Turbulent with rip tide.

\xv Maabal tuud ha tungud Duway Bullud.

\xe The current is very turbulent near Duway Bullud.

\ps v

\gl become turbulent

\de For the ocean (a rip tide) to become turbulent.

\xv Umabal tuud in dagat bang hunas.

\xe The sea becomes very turbulent at low tide.

www.w3.org/TR/REC-xml

FieldWorks 7 XML model Page 2

7/16/2015

\xv Magabal in dagat bang lumabay in kappal.

\xe There will be rip tide when a boat passes.

\dt 18/May/2004

This can be turned into a basic XML file:

<?xml version="1.0" encoding="UTF-8"?>

<SFMDatabase>

<lx>abal</lx>

<ps>adj</ps>

<gl>turbulent</gl>

<de>Turbulent with rip tide.</de>

<xv>Maabal tuud ha tungud Duway Bullud.</xv>

<xe>The current is very turbulent near Duway Bullud.</xe>

<ps>v</ps>

<gl>become turbulent</gl>

<de>For the ocean (a rip tide) to become turbulent.</de>

<xv>Umabal tuud in dagat bang hunas.</xv>

<xe>The sea becomes very turbulent at low tide.</xe>

<xv>Magabal in dagat bang lumabay in kappal.</xv>

<xe>There will be rip tide when a boat passes.</xe>

<dt>18/May/2004</dt>

</SFMDatabase>

The top line is a special format that identifies this as an XML file and identifies the encoding.

XML files usually use Unicode UTF-8 data. Following this is a single top-level XML element

required by XML. XML elements must have a “begin” tag (enclosed in wedges) and a matching

“end” tag (enclosed in wedges with a slash after the opening wedge). Inside the element can be

embedded elements or raw text. The SFMDatabase element contains a sequence of elements,

while the remaining elements contain raw text. This example starts each element on a new line,

but that is optional. An XML processor will allow any amount of white space between elements.

Additional information can be provided that makes the data more useful:

<?xml version="1.0" encoding="UTF-8"?>

<SFMDatabase>

 <entry>

 <lx lang="tsg">abal</lx>

 <sense>

 <ps lang="en">adj</ps>

 <gl lang="en">turbulent</gl>

 <de lang="en">Turbulent with rip tide.</de>

 <example>

 <xv lang="tsg">Maabal tuud ha tungud Duway Bullud.</xv>

 <xe lang="en">The current is very turbulent near Duway Bullud.</xe>

 </example>

 </sense>

 <sense>

 <ps lang="en">v</ps>

FieldWorks 7 XML model Page 3

7/16/2015

 <gl lang="en">become turbulent</gl>

 <de lang="en">For the ocean (a rip tide) to become turbulent.</de>

 <example>

 <xv lang="tsg">Umabal tuud in dagat bang hunas.</xv>

 <xe lang="en">The sea becomes very turbulent at low tide.</xe>

 </example>

 <example>

 <xv lang="tsg">Magabal in dagat bang lumabay in kappal.</xv>

 <xe lang="en">There will be rip tide when a boat passes.</xe>

 </example>

 </sense>

 <dt value="18/May/2004"/>

 </entry>

</SFMDatabase>

Some additional structure has now been added to the data. An Entry element surrounds the entry,

a Sense element surrounds senses, and an Example element surrounds examples. Attributes have

also been added to identify the language of each string. Attributes are placed inside the begin

element after the element name. Elements may have 0 or more attributes. Each attribute has a

name and the contents enclosed in double or single quotes. The date element has also been

changed to include the date in a value attribute rather than inside the element. If the element does

not have any content, an abbreviated form of the end tag can be used (a slash just before the

closing wedge of the begin tag).

Within attribute data and embedded element data, certain characters must be escaped to avoid

confusion with the markup around the data. The main characters you need to escape in data are

as follows:

< <

> >

& &

" "

These are predefined entities. For example, to indicate "ISO-8859-1<>UNICODE" the XML

data needs to be "ISO-8859-1<>UNICODE". Actually, any Unicode value can be escaped

using the hexadecimal numeric character references, such as “ኣ”.

The XML sample above uses a nested structure, which is fairly easy for a user to understand.

This information can also be stored in a flat structure which may work much faster for a

computer to process. Here’s an example of the same data in a flat structure.

<?xml version="1.0" encoding="UTF-8"?>

<SFMDatabase>

 <obj class="entry" id="1">

 <lx lang="tsg">abal</lx>

 <dt value="18/May/2004"/>

 <ownobj id=10>

 <ownobj id=20>

 </obj>

 <obj class="sense" id=10>

FieldWorks 7 XML model Page 4

7/16/2015

 <ps lang="en">adj</ps>

 <gl lang="en">turbulent</gl>

 <de lang="en">Turbulent with rip tide.</de>

 <ownobj id=30>

 </obj>

 <obj class="sense" id=20>

 <ps lang="en">v</ps>

 <gl lang="en">become turbulent</gl>

 <de lang="en">For the ocean (a rip tide) to become turbulent.</de>

 <ownobj id=40>

 <ownobj id=50>

 </obj>

 <obj class="example" id=30>

 <xv lang="tsg">Maabal tuud ha tungud Duway Bullud.</xv>

 <xe lang="en">The current is very turbulent near Duway Bullud.</xe>

 </obj>

 <obj class="example" id=40>

 <xv lang="tsg">Umabal tuud in dagat bang hunas.</xv>

 <xe lang="en">The sea becomes very turbulent at low tide.</xe>

 </obj>

 <obj class="example" id=50>

 <xv lang="tsg">Magabal in dagat bang lumabay in kappal.</xv>

 <xe lang="en">There will be rip tide when a boat passes.</xe>

 </obj>

</SFMDatabase>

This format stores the same data as the previous example, but it is arranged in a different format.

Instead of having senses nested in entries, and examples nested in senses, we just have a

sequence of objects; each object indicating the class of object it is, and having a unique

identifier. Basic data such as strings and dates appear within the object. Instead of nesting owned

(internal) objects, we use a ownobj reference to the object that would be owned within this

object. So the entry owns object 10 followed by object 20. To find what this is, we have to search

above or below the current object to find the object with an id of 10 or 20. Likewise, the

examples are separate objects that are referenced within senses using their id numbers.

FieldWorks versions up through 6.0 used a nested format in the XML format for data. A few list

files in FW 7.0 still use the nested format. FieldWorks 7.0 started using a flat structure. These

files are given a file extension of *.fwdata. A database, such as db4o can also be used to store a

sequence of objects as rows with each row storing an XML string representing the data. In

FieldWorks 7.0 this type of db4o database file is given a *.fwdb extension. Transforming the

data between an XML fwdata file and a db4o fwdb file is very fast because it is basically a dump

to and from the database.

There are various kinds of XML editors that can make editing XML files easier. XMLmind is a

free XML editor that can be customized in various ways. Andy Black provides customizations

for working with linguistics papers called XLingPaper. He also provides a way in Flex to dump

interlinear text to XML that works with these customizations. ZEdit (installed with FieldWorks)

handles large XML files with ease, although it does not provide any special XML help.

FieldWorks 7 XML model Page 5

7/16/2015

Microsoft Internet Explorer has a limited ability to check the basic integrity of an XML file. By

default, when you double-click an XML file, it opens in Internet Explorer and displays it with

buttons to expand and contract element hierarchy. If something invalid is in the file, it usually

gives a useful error message near the end at the point where it failed. Long files, such as

FieldWorks projects open very slowly in Internet Explorer and many other editors.

Once your data is in XML, you can use processes such as XSLT to transform it in numerous

ways. This can work in conjunction with style sheets to display the data in many interesting

ways.

Comments in XML are ignored in processing and are enclosed in <!-- and -->:

 <!-- this is a comment -->

2 FieldWorks XML model

FieldWorks provides a standard way to represent the conceptual model as XML data. This XML

file uses the *.fwdata file extension. This is the native format for storing FieldWorks data. This

format is zipped up along with other relevant information in a FieldWorks backup file with a

*.fwbackup file extension. This section describes the FieldWorks XML model.

Note: The LinguaLinks Workshops and SFM import processes transform the input files into a

hierarchical XML format that is similar to FieldWorks 6.0 and earlier data. It is then imported

into existing FieldWorks Projects.

In a FieldWorks fwdata file, every object has a single element that includes any basic properties

(strings, integers, etc.) and reference lists of any owned or referenced objects. The objects can be

in any order since the file is flat rather than hierarchical.

2.1 Basic properties

2.1.1 Strings

All strings other than Unicode or BigUnicode are identified with a writing system code (e.g.,

ws="en"). This writing system code should match the file name of a writing system *.ldml file

contained in the WritingSystemStore folder within the project folder. This ldml file stores

information relevant to the writing system. (See FieldWorks Writing Systems.docx for details.) To

see this code in a FieldWorks program, go to the General tab of the Writing System Properties

dialog. The Internal Code is shown at the bottom of the dialog.

Unicode and String have special meaning in FieldWorks. All data is actually stored as Unicode

code points. The difference in these two terms is that Unicode strings do not allow any

embedding including specifying a language, while String strings always contain a language and

may have other embedding.

In the XML representation of strings, there is no difference between the short and long versions

as there used to be in the SQL Server database version. As a result, you need to consider four

basic kinds of strings.

2.1.1.1 Unicode or BigUnicode

The simplest type of string is a FieldWorks Unicode or BigUnicode string.

FieldWorks 7 XML model Page 6

7/16/2015

<EthnologueCode>

<Uni>XKAL</Uni>

</EthnologueCode>

This is the EthnologueCode property in LangProject. This kind of code and filenames do not

have an inherent language, so they are specified as FieldWorks Unicode strings. There is a slight

problem with this. FieldWorks needs to use a writing system in order to determine which font to

use to display the string. At this point the FieldWorks display mechanism shows boxes for

characters that are not in the current font rather than substituting other fonts as needed.

FieldWorks generally chooses a writing system representing the system language on your

computer, if the writing system exists, otherwise it defaults to English when displaying these

strings.

2.1.1.2 String or BigString

Normally a string will have a single run, but to demonstrate some of the complexity you may

encounter, this demonstrates how a complex FieldWorks String or BigString is represented:

<Contents>

<Str>

<Run ws="en">Went fishing with </Run>

<Run ws="de">Rolf</Run>

<Run ws="en"> at the </Run>

<Run ws="en" tags="I2121F090-4744-4BC0-AE46-3E0D48C071B5 I2BDD0E85-F9B2-

11D3-977B-00C04F186933">river</Run>

<Run ws="en" >. Within no time, he had caught about 10 </Run>

<Run ws="en" bold="invert" fontFamily="Adams Extended">fierce</Run>

<Run ws="en"> looking </Run>

<Run ws="en" namedStyle="Emphasized Text">pirana</Run>

<Run ws="en"> which we </Run>

<Run ws="en"

externalLink="silfw://localhost/link?app%3dflex%26database%3dC%3a%5cWork%5cFW7

Projects%5cTestLangProj%5cTestLangProj.fwdata%26tool%3dlexiconEdit%26guid%3d524

4672f-ee85-4b5e-ae2a-6c03ece57689%26tag%3d" namedStyle="External

Link">subsequently</Run>

<Run ws="en"> cleaned and ate for </Run>

<Run ws="en" externalLink="C:\Dropbox\Cooked pirana.jpg" namedStyle="External

Link">breakfast</Run>

<Run ws="en">.</Run>

<Run ws="en"

type="picture">424D262C00000000000036…04000028000000860000</Run>

</Str>

</Contents>

This is the Contents property of an StTxtPara object. It has many embeddings to demonstrate the

rich capabilities of FieldWorks Strings. FieldWorks Strings contain a sequence of Runs inside a

Str element, with each run specifying a writing system. All characters in a given run share the

same attributes. Whenever a set of attributes changes, it requires a new Run. This FieldWorks

String starts with a Run of English characters, then contains an embedded German word

FieldWorks 7 XML model Page 7

7/16/2015

(ws="de"). The word "river" has two overlay tags applied to the word. These were used in the

data notebook to allow portions of strings to reference list items (not implemented in FieldWorks

7.0). The GUIDs in these cases are the FieldWorks IDs for two list items. The word "fierce" is

hard-coded by inverting the bold toggle and setting a specific font. The word "pirana" is tagged

with a style. The formatting associated with the Emphasized Text style is determined by an

StStyle elsewhere in the system. The string "subsequently" is formatted with an External Link

style, plus it holds a hot link to a FieldWorks lexical entry. The word "breakfast" also has an

External Link style and references an external picture file. The final run represents an embedded

object, which in this case is a picture, encoded as a long string of hex codes. FieldWorks does

not use this way of inserting pictures anymore, but this demonstrates how other objects can be

embedded in the string.

The value for the “ws” attribute in strings is the name of the associated LDML file in the

WritingSystemStore directory inside the project directory.

2.1.1.3 MultiUnicode or MultiBigUnicode

Many properties (fields) in FieldWorks are designed to hold strings that will never have

embedding, but may have translations in different languages or writing systems (e.g., lexeme

form, gloss, and names and abbreviations for list items). Here is how these MultiUnicode or

MultiBigUnicode properties are encoded.

<Name>

<AUni ws="en">adjunct</AUni>

<AUni ws="fr">accessoire</AUni>

<AUni ws="es">adjunto</AUni>

</Name>

This field is the Name for a CmPossibility object. In this case, there are three FieldWorks

Unicode strings; English, French, and Spanish. Each FieldWorks Unicode string is stored in an

AUni element. Even though the FieldWorks Unicode string itself does not have a writing system,

FieldWorks knows the intended writing system by the “ws” attribute of the AUni element. It is

an error to have more than one AUni element in a single property with the same writing system.

2.1.1.4 MultiString or MultiBigString

Other properties (fields) need the ability to store equivalent translations, but also need to allow

things such as embedded writing systems and formatting. Here is how these MultiString or

MultiBigString properties are encoded.

<Translation>

<AStr ws="en">

<Run ws="en">You may damage the computer.</Run>

</AStr>

<AStr ws="fr">

<Run ws="fr">Vous risquez d'endommager l'ordinateur.</Run>

</AStr>

</Translation>

This field is the Translation property on a CmTranslation object. This example has translations

for English and French. This is a simple FieldWorks String in that it only contains one run, but

FieldWorks 7 XML model Page 8

7/16/2015

any number is possible. Each FieldWorks String is stored in an AStr element which identifies the

overall writing system for the FieldWorks String. Normally this is the same writing system as the

first run, but it does not have to be. You could have an English string that starts with a French

word. It is an error to have more than one AStr element in a single property with the same

writing system.

2.1.2 Other basic properties

Integer properties are represented as follows:

<HomographNumber val="1"/>

This is the HomographNumber property on LexEntry. The value of the integer is stored as a

decimal “val” attribute. The default value for missing properties is false.

Boolean properties are represented as follows:

<IsSorted val="true"/>

This is the IsSorted property on CmPossibilityList. The value is stored in the “val” attribute as

“true” or “false”. The default value for missing properties is false.

GUID properties are represented as follows:

<ListVersion val="b41ff27f-5caf-4eac-92de-0f92acb0caa3"/>

This is the ListVersion property on CmPossibilityList. The GUID value is stored in the “val”

attribute in this string format.

Binary properties are represented as follows:

<Details><Binary>6400000001000000</Binary></Details>

This is the Details property on UserView. Binary data is stored as a sequence of hexadecimal

bytes.

Time properties are represented as follows:

<DateModified val="2009-9-23 20:53:23.390"/>

This is the DateModified property on CmMajorObject. The time is stored in the “val” attribute in

the format YYYY-MM-DD HH:MM:SS.TTT.

GenDate properties are represented as follows:

<DateOfEvent val="193112111"/>

This is the DateOfEvent property on RnEvent. The generic date is stored as a decimal number in

the “val” attribute.

2.2 Writing systems

Unlike previous versions of FieldWorks, Version 7.0 does not store writing system definitions in

the data file. Writing systems for strings are still identified by a writing locale identifier, but the

definition for that writing system (name, font, keyboard, collation, etc.) are now stored in a

Unicode Locale Data Markup Language (LDML) file with the name being the locale identifier

and an ldml extension. This file is an XML file that follows a Unicode standard defined in

Unicode Technical Standard #35 (www.unicode.org/reports/tr35).

www.unicode.org/reports/tr35

FieldWorks 7 XML model Page 9

7/16/2015

Each writing system used in the project data file has a corresponding LDML file in the

WritingSystemStore directory directly under the project folder. In addition it is stored in the global

WritingSystemStore directory located in C:\ProgramData\SIL (Vista and Windows 7), and

C:\Documents and Settings\All Users\Application Data\SIL (Windows XP). More information on these

files is available in FieldWorks 7 Writing systems.docx.

2.3 Class instances

Instances of classes are stored in an XML file as an rt element. Here is an example of the back

translation CmPossibility item:

<rt class="CmPossibility" guid="80a0dddb-8b4b-4454-b872-88adec6f2aba"

ownerguid="d7f71649-e8cf-11d3-9764-00c04f186933">

<Abbreviation>

<AUni ws="en">BT</AUni>

</Abbreviation>

<DateCreated val="2004-9-11 2:17:31.153" />

<DateModified val="2004-9-11 2:19:0.0" />

<ForeColor val="-1073741824" />

<IsProtected val="true" />

<Name>

<AUni ws="en">Back translation</AUni>

</Name>

<Discussion>

<objsur t="o" guid="3aeef2e2-9466-41d5-afa7-d569f667fc79" />

</Discussion>

</rt>

Every instance of a class has an ‘rt’ element with at least class and guid attributes. The class

attribute defines the class of the object. The guid attribute defines the unique identifier for this

instance of the class. Most objects are owned by some other object. If so, they have an

ownerguid attribute that references the guid of the owning instance. Unlike the older FieldWorks

XML files, the guid attribute must be a valid GUID, not a unique string as before. If you need to

generate guids outside of a programming environment, you can download a free GuidGen

program from http://users.csc.calpoly.edu/~bfriesen/software/console.shtml. This can be run in a

Cmd window to generate one or any number of guids. Type GuidGen -? for help.

The properties on the class are stored as nested elements. All of the properties in this example

except Discussion are basic properties. Discussion is an owning property and will be discussed in

the next section.

2.4 Owning properties

Owning properties are stored as an element that contains one or more object surrogates that link

to the owned objects. The following example illustrates how this works.

<rt class="CmPossibility" guid="80a0dddb-8b4b-4454-b872-88adec6f2aba"

ownerguid="d7f71649-e8cf-11d3-9764-00c04f186933">

...

<Discussion>

http://users.csc.calpoly.edu/~bfriesen/software/console.shtml

FieldWorks 7 XML model Page 10

7/16/2015

<objsur t="o" guid="3aeef2e2-9466-41d5-afa7-d569f667fc79" />

</Discussion>

</rt>

<rt class="StText" guid="3aeef2e2-9466-41d5-afa7-d569f667fc79" ownerguid="80a0dddb-

8b4b-4454-b872-88adec6f2aba">

<Paragraphs>

<objsur t="o" guid="9555b62c-51f6-4b2a-ba51-944c5d69f4c1" />

</Paragraphs>

</rt>

<rt class="StTxtPara" guid="9555b62c-51f6-4b2a-ba51-944c5d69f4c1"

ownerguid="3aeef2e2-9466-41d5-afa7-d569f667fc79">

<ParseIsCurrent val="False" />

</rt>

The Discussion field in a CmPossibility owns an StText object which in turn owns one or more

StTxtPara objects that store the actual text of the paragraph. The owning element stores one or

more objsur elements that reference the guid of the owned object(s). In this example, note that

the objsur guid in the Discussion element matches the StText guid field. Furthermore, the

ownerguid of the StText field matches the guid field of the owning CmPossibility. Thus in an

owning relationship, you can always trace up or down the ownership hierarchy using the guids.

The same thing holds for the Paragraphs element that owns the StTxtPara object. The StTxtPara

in this example does not have any Contents property, so it is a blank paragraph at this point.

In addition to a guid atttribute, the objsur element also has a ‘t’ attribute. This attribute is ‘o’ for

an owning link and ‘r’ for a reference link. Reference properties are discussed in the next section.

Atomic owning elements have zero or one objsur element. Collection owning elements have any

number of objsur elements and the order is irrelevant. Sequence owning elements have any

number of objsur elements and the order is significant.

Not all objects have ownerguid attributes. Certain objects such as LexEntry and WfiWordform

are unowned. Since all LexEntry objects are virtually owned by the LexDb, there is only one

LexDb in a project, and the order is not stored explicitly in the data, we can assume that all

entries are essentially owned by the LexDb without explicitly recording all of the ownerguids.

All WfiWordforms were originally owned by a WordformInventory, but since the

WordformInventory had no other purpose, it was removed from the model leaving the

WfiWordforms unowned.

2.5 Reference properties

Reference properties are similar to owning properties. Reference properties are stored as an

element that contains one or more object surrogates that link to the referenced objects. The

following example illustrates how this works.

<rt class="LexSense" guid="e79c8d25-eb3d-43ec-94b7-ccb4fead1d40"

ownerguid="d6e17340-dc0f-458a-9fd6-c8de368918d5">

...

<SemanticDomains>

<objsur t="r" guid="ba06de9e-63e1-43e6-ae94-77bea498379a" />

FieldWorks 7 XML model Page 11

7/16/2015

<objsur t="r" guid="191ca5a5-0a67-426e-adfc-6fdf7c2aaa2c" />

</SemanticDomains>

</rt>

<rt guid="191ca5a5-0a67-426e-adfc-6fdf7c2aaa2c" class="CmSemanticDomain"

ownerguid="dc177f3c-d0fd-4232-adf1-a77b339cdbb2">

<Name>

<AUni ws="en">House</AUni>

</Name>

<Abbreviation>

<AUni ws="en">6.5.1.1</AUni>

</Abbreviation>

...

</rt>

<rt guid="ba06de9e-63e1-43e6-ae94-77bea498379a" class="CmSemanticDomain"

ownerguid="c924bfce-beed-4382-95e8-62b54951c83d">

<Name>

<AUni ws="en">Person</AUni>

</Name>

<Abbreviation>

<AUni ws="en">2</AUni>

</Abbreviation>

...

</rt>

In this example, a sense references two semantic domains. The SemanticDomains element of the

sense contains two objsur objects. Each one has a ‘t’ attribute set to ‘r’ to indicate it is a

reference link. It also contains a guid attribute that matches the corresponding guid attribute of a

CmSemanticDomain object. Thus the first semantic domain link is to the Person

CmSemanticDomain and the second is to the House CmSemanticDomain.

Unlike an owning property, there is no corresponding link from the CmSemanticDomain back to

the LexSense that references it. A reference link is a one way link. If you want to find all of the

senses that reference a particular CmSemanticDomain, you would need to search all

SemanticDomain elements looking for ones that have an objsur with a matching guid.

Atomic reference elements have zero or one objsur element. Collection reference elements have

any number of objsur elements and the order is irrelevant. Sequence reference elements have any

number of objsur elements and the order is significant.

2.6 Top level XML

This illustrates the top level of a FieldWorks *.fwdata XML file:

<?xml version="1.0" encoding="utf-8"?>

<languageproject version="7000028">

...

</languageproject>

FieldWorks 7 XML model Page 12

7/16/2015

The top element is languageproject which has a version attribute that gives the version of the

database. If this version is lower than the current program, the file will be migrated to the

program version when the file is opened. If the file version is newer than the current program,

the file cannot be opened without upgrading the program to the same version as the file. The

contents of the languageproject element is an optional AdditionalFields element described in the

next section, and a collection of ‘rt’ elements representing the objects in the database.

2.7 Custom fields

When custom fields are defined, an AdditionalFields element is added to the languageproject

element. AdditionalFields holds CustomField elements, each one defining a custom field defined

by the user that is unique to this database.

<AdditionalFields>

<CustomField name="Weather" class="RnGenericRec" destclass="7" type="RC"

wsSelector="-3" helpString="originally a standard part of Data Notebook records"

listRoot="2bdd1159-f9b2-11d3-977b-00c04f186933" />

<CustomField name=" My Complex String" class="LexEntry" type="String" wsSelector="-

1" />

<CustomField name=" My Simple Strings" class="LexEntry" type="MultiUnicode"

wsSelector="-3" />

<CustomField name=" My Paragraphs" class="LexEntry" destclass="14" type="OA" />

<CustomField name=" My List Items " class="LexEntry" destclass="7" type="RC"

listRoot="d7f713a0-e8cf-11d3-9764-00c04f186933" />

<CustomField name="My Date" class="LexEntry" type="GenDate" />

<CustomField name="My Number" class="LexEntry" type="Integer" />

</AdditionalFields>

Possible attributes of the CustomField element are

 name—Specifies the user-defined name of the custom field.

 class—Specifies the class name to which the custom field applies.

 destclass—(optional) Specifies the class number of the object owned or referenced by this

field.

 type—Specifies the kind of field. Not all of these possibilities are currently supported in the

UI. Possibilities are

 Binary—The field holds binary data stored as a sequence of hexadecimal bytes.

 Boolean—The field holds a Boolean value (e.g., true, false)

 GenDate—The field holds a generic date stored as an integer. The format is described in

Conceptual model overview.doc.

 Guid—The field holds a unique identifier for an object.

 Integer—The field holds an integer value

 String—The field holds a complex string

 MultiString—The field holds a number of complex strings, each for a different writing

system.

 Time—The field holds a time value (e.g., 2006-09-28 14:15:34.507)

 Unicode—The field holds a simple string

 MultiUnicode—The field holds a number of simple strings, each for a different writing

system.

FieldWorks 7 XML model Page 13

7/16/2015

 OA— The field owns a single object (atomic)

 OC— The field owns an unordered collection of objects

 OS— The field owns an ordered sequence of objects

 RA— The field holds a reference to a single object (atomic)

 RC— The field holds references to an unordered collection of objects

 RS— The field holds references to an ordered sequence of objects

 wsSelector—(optional) This number determines the default writing system(s) for this field.

Possibilities are

 -1—The first analysis writing system.

 -2—The first vernacular writing system.

 -3—All analysis writing systems.

 -4—All vernacular writing systems.

 -5—All analysis then all vernacular writing systems.

 -6—All vernacular then all analysis writing systems.

 listRoot—(optional for reference properties) If the dstclass is a CmPossibility (7) or subclass,

this attribute holds the guid of the CmPossibilityList that owns the items that can be held in

this reference property.

 helpString—(optional) This is a user-defined description of how the field is used.

The following examples show how data is stored in custom fields. The name attribute matches

the name attribute of the custom field.

This is an example of a custom Single-line Text field set to First Analysis or First Vernacular

writing system. The underlying type is a MultiString field, although the UI does not enable more

than one writing system. The string itself can have embedded information.

<Custom name="My Complex String">

<AStr ws="en">

<Run ws="en">This is the field content.</Run>

</AStr>

</Custom>

This is an example of a custom Single-line Text field set to All ... writing systems. The

underlying type is a MultiUnicode field, so it cannot have embedded information. The UI

follows normal writing system rules for MultiUnicode fields.

<Custom name="My Simple Strings">

<AUni ws="en">house</AUni>

<AUni ws="fr">maison</AUni>

</Custom>

This is an example of a Multiparagraph Text custom field. This is always an owning atomic

property that holds one StText. This example only shows the StText guid. The rest of the objects

would be defined as normal <rt> elements.

<Custom name="My Paragraphs">

<objsur guid="c2ac5444-26cf-4318-9e08-1f12d64e173e" t="o" />

</Custom>

FieldWorks 7 XML model Page 14

7/16/2015

This is an example of a List Reference (multiple items) custom field. The underlying type is a

reference collection field which holds references to objects. The (single item) type would be the

same except the UI only allows it to hold one item.

<Custom name="My List Items">

<objsur guid="d7f713a5-e8cf-11d3-9764-00c04f186933" t="r" />

<objsur guid="d7f713a6-e8cf-11d3-9764-00c04f186933" t="r" />

</Custom>

This is an example of a date custom field. The underlying type is a GenDate field.

<Custom name="My Date" val="201011171" />

This is an example of a number custom field. The underlying type is an Integer field.

<Custom name="Number" val="45" />

Note: FieldWorks versions between 7.0 and 7.2.5 had a bug when importing new custom fields

from a LIFT file created by WeSay. This resulted in a custom field definition with

type="MultiBigString". For example:

<CustomField name="SILCAWL" class="LexSense" type="MultiBigString" wsSelector="-

5" />

The data for the field was stored as an AStr, with multiple analysis and vernacular writing

systems. Currently Flex only supports custom fields as AUni with multiple writing systems or

AStr with one writing system. So this buggy custom field is a combination between the two.

FieldWorks 8.0 will not accept these custom fields and refuses to open. Assuming the user only

used a single writing system, the simplest solution is to edit the CustomField definition in the

FwData file (using the ZEdit editor in the FieldWorks directory) to type="String" and change the

wsSelector from -5 to -1 if the field is the first analysis writing system, or to -2 if it’s the first

vernacular writing system. If multiple writing systems are used in this field, it should be changed

to type="MultiUnicode", but then you’ll have to convert the data from AStr to AUni, and if the

user added embeddings, these have to be removed. Contact LsDev in Dallas for help in this

situation.

3 Source of FieldWorks XML files

The native format for storing project data uses the flat XML file described above. When you are

not sharing your data with other users, this is the format that is saved in the project folder, and

has an extension of fwdata. When you are sharing data with other users, the data is stored in a

db4o database with an extension of fwdb. This file is described in more detail in FieldWorks 7

database model.docx, but it basically stores a record for each object. The content of the record is

the ‘rt’ XML element from the fwdata file. A FieldWorks backup file (fwbackup extension) is a

zip file that always stores a fwdata file, even if the current data is a fwdb file.

When creating a new FieldWorks project, C:\Program

Files\SIL\FieldWorks\Templates\NewLangProj.xml is used as the beginning template. This file is also

a fwdata file.

FieldWorks 7 XML model Page 15

7/16/2015

4 FDOBrowser

FieldWorks includes a FDOBrowser program that opens with a FDO Model tab to give class and

property information on the current FieldWorks data model. There are no installed shortcuts for

FDOBrowser.exe, so it needs to be run directly from c:\Program Files\SIL\FielodWorks 7.

You can open any FieldWorks fwdata or fwdb file to investigate the contents of the file. The

LangProj tab lets you browse through the ownership hierarchy of objects in the database. The

Repositories tab lets you look at all of the objects of a certain class. The program provides some

initial editing capabilities that can be used to modify the data. The hope is that this program can

be improved in time to provide more powerful capabilities to search and edit data. Of course,

care should be taken any time you make changes at this low level since it bypasses some of the

data integrity code that is built into the other FieldWorks programs. As a result, you could edit

the file in a way that would make it impossible to load the file into Flex or TE. Always make a

backup copy of your data first so that you will not lose important work if you do something

wrong.

If a file is damaged too badly, it may not even open in the FDOBrowser program. In that case,

you’ll need to edit the fwdata file using ZEdit (installed with FieldWorks) or some XML editor

that is capable of opening large files. There are several ways you can validate a damaged fwdata

file to determine what is wrong.

One validation method is to use a DTD (XML Document Type Definition) file which describes

the structure of the data. Every released version of FieldWorks comes with a fwdata.dtd file that

can be used to validate the data. In a Cmd window open on your FieldWorks program directory,

you can use the following command to validate data with a DTD file.

rxp -s -V -D languageproject fwdata.dtd "/work/ww/distfiles/Data/Turkish Romans.xml"

bin\rxp -s -V -D languageproject /work/ww/distfiles/fwdata.dtd

"/work/ww/distfiles/Data/Turkish Romans.xml"

Another validation method is to use a RNG (Relax NG Full Syntax Schema) file which describes

the structure of the data. Every released version of FieldWorks comes with a fwdata.rng file that

can be used to validate the data. In a Cmd window open on your FieldWorks program directory,

you can use the following command to validate data with a RNG file.

RngValidate fwdata.rng "Data\Turkish Romans.xml"

DistFiles>RngValidate fwdata.rng "Data\Turkish Romans.xml"

FieldWorks also comes with FixFwData.exe in the FieldWorks program directory. This program

checks for incorrect linkages and some writing system problems in a fwdata file and

automatically cleans up your data if any problems are found. Sometimes if a fwdata file cannot be

opened in FieldWorks, running this program will correct the problem enough to allow it to be

opened. You can run FixFwData from a Cmd window by specifying the full path of the fwdata

file. If you can open another project in Flex, you can also run this program on a different file by

choosing Tools...Utilities, click the “Find and fix errors in a FieldWorks data (XML) file”

checkbox and click “Run Checked Utilities Now”. You can then select the project you want to

fix.

FieldWorks 7 XML model Page 16

7/16/2015

If you have a fwdb file that cannot be opened due to some kind of corrupted data, FDOBrowser

may be able to convert the data from fwdb to fwdata format. To do this, start FDOBrowser, then

choose Tools...Extract db4o file contents to XML. Choose the db4o (fwdb) file, then specify the

XML (fwdata) file, then click Extract. The resulting fwdata file can then be checked and fixed

with the above tools.

5 Data protection, and recovering from a failure

As always, you should be making frequent backups of your data using File…Project

Management…Back up this Project. These .fwbackup files should be copied safely to backup

media. If all else fails in our attempt to protect your data, you should be able to restore your

project from the last .fwbackup file with minimal loss. Working long periods of time without

making backups is asking for trouble.

5.1 Non-shared

The project data is stored in an .fwdata file. Various attempts are made by Flex to ensure that this

file does not become corrupted. When the project is open in a FieldWorks program, a .lock file is

created. When that file exists, if another FieldWorks program from a separate process attempts to

open the file, it will be blocked and will give the user an error message that the file is already in

use.

As the user works, Flex frequently saves the data in a separate thread which doesn’t block

continuing work during this process:

1. The full data with changes is written to an entirely new .tmp file without modifying the

.fwdata file.

2. When the write is complete, the original .fwdata file is renamed to .bak, replacing the file that

was there.

3. The .tmp file is then renamed to .fwdata.

Under very rare circumstances, you might find that there is no .fwdata file. In this case, the

project will not appear in the File…Open dialog. But if you look in the project file, you will

likely see a .tmp or .bak file. In this case, the safest thing to do is to make a backup copy of these

files in the same directory, so that if anything else goes wrong in recovery, you at least have the

best chance of recovering. Then rename the .tmp (most recent) or .bak (second most recent) file

to .fwdata. Now Flex should open without losing any data, or at most, everything except the last

edits.

When you stop Flex on a large project, you’ll probably see a small dialog with a progress bar

showing progress on completing the save. Don’t turn off the computer during this time.

If something happens to corrupt the .fwdata file so that it can’t be opened, Flex will try to warn

the user of the problem and ask if they want to try to use the .bak file instead. I think this works

under some circumstances and not under others. In any case, if you can’t open Flex, but you have

a .fwdata and .bak file, the best thing is to make a copy of both files in the project directory, then

delete the .fwdata file and rename the .bak file to .fwdata. If that solves the problem, great. If not,

you will probably need help, and the project directory should be sent with your request for help.

FieldWorks 7 XML model Page 17

7/16/2015

5.2 Shared

When you are in sharing mode, your data is stored in an .fwdb Db4o database file. FieldWorks

programs can use this data from different processes or across the network. As changes are made

the changed data is written to this file and then other programs are updated with the changes.

If the .fwdb file ever becomes corrupted, the best chance of recovery would be to convert this to

a .fwdata file and then use FixFwData or other processes to try to repair the file. To convert a

.fwdb file to .fwdata open FDOBrowser, then choose Tools...Extract db4o file contents to XML.

Choose the db4o (fwdb) file, then specify the XML (fwdata) file, then click Extract.

6 Modifying data in FieldWorks XML files

There are times when you may need to make some consistent changes to your data that are not

possible in bulk edit. If there are only a few places, it is obviously best to do it manually.

However, if hundreds or thousands of consistent changes are needed, and you have the ability to

use CC, XSLT, Python, or some other program that can deal with XML data, it may well be

worth the time to make the automated changes in the fwdata file.

Most examples here use CC tables. If you don’t have SIL Consistent Changes program installed,

it can be downloaded from www.sil.org/computing/catalog/index.asp.

Caution: As with any method for modifying the database outside of a FieldWorks program, if

you do not know what you are doing, you can inadvertently damage the data. FieldWorks

applications may no longer run or it could do damage in a way that will not show up until later.

Be extremely cautious about making any changes to the fwdata file. Any time you plan to do this,

make sure you first back up your project and then after the changes are made, check your

changes carefully before going on to other work.

The sections below give several examples to illustrate some of the techniques for using the XML

file to do something that is not possible to do within the current programs. These examples

illustrate how CC can be used for some tasks, but it imposes severe limitations on operations

involving more than one object since it is difficult to follow links. Also, CC is not capable of

inserting multiple new objects since each one requires generating a GUID and CC does not

provide this capability. XSLT is an XML transformation language that can be useful for working

with these files, except many XML processors require loading the entire file into a DOM in

memory. This is typically quite slow and can run out of memory. Perl and Python are probably

better choices to use if you are familiar with these languages, or you need to do a lot of work in

XML files.

6.1 Making spelling/orthographic changes in one writing system

Suppose you need to make some spelling or orthographic changes, e.g., to all the Tausug strings

in the database, whether they are embedded or not. With bulk edit, you can do this on a field-by-

field basis (although not when embedding is involved). There may be many other strings in the

database (such as Scripture, data notebook, and lists) that also use this writing system that should

also be changed. At this point there is no way to do this inside any FieldWorks program. This

task is quite simple when working with a fwdata file.

Every string for a given writing system is in one of these two environments:

 <Run ... ws="tsg" ... >a string in Tausug</Run>

www.sil.org/computing/catalog/index.asp

FieldWorks 7 XML model Page 18

7/16/2015

 <AUni ws="tsg">a string in Tausug</AUni>

There could be additional attributes in the Run element, but each Run or AUni that has the “tsg”

writing system will contain Tausug text.

This CC table will make this change:

c Change in writing system.cc

c To set up, set the ws in the begin statement and put your changes in changes group

begin > store(ws) 'tsg' endstore use(main)

group(changes)

'f' > 'v'

'F' > 'V'

'c' > 'k'

'C' > 'K'

group(main)

'<Run ' > next

'<AUni ' > dup use(run)

group(run)

'ws="' cont(ws) '" />' > dup use(main)

'ws="' cont(ws) '"' > dup set(change)

'>' > dup if(change) use(changes,inRun) else use(main) endif

group(inRun)

'/>' > next

'</AUni>' > next

'</Run>' > dup clear(change) use(main)

Note: If the changes you make could affect interlinear baselines (or interlinearized scripture),

after making the changes, you should use Tools…Utilities, “Force Rechecking Word Breaks”.

Otherwise your baseline will be out of sync with wordforms which can cause problems in the

concordance view and can mess up interlinear spelling changes.

Note: If you use LIFT to transfer data to and from Flex it’s possible you may have some

LiftResidue elements that contain strings used in WeSay but not in Flex. These strings would

either start with lang="xxx" or lang="xxx". The above table would need to be

modified if you want to also convert these strings.

6.2 Converting bar codes to formatted text

When importing data from standard format (SFM) into Flex you can convert bar codes such as

|bxyz|r to emphasized text or some other formatting. However, this conversion isn’t available

when importing from LinguaLinks, and it’s possible you missed these conversions when

importing data into LinguaLinks. If you have these kinds of in-line markers in FieldWorks and

would like to convert these to something meaningful, you can use a CC table such as the

FieldWorks 7 XML model Page 19

7/16/2015

following one to make these conversions. This particular table converts any sequence of |b…|r to

use the Emphasized Text style.

c This converts text between |b and |r to emphasized text.

group(main)

'<Run ' > store(run) dup use(startRun)

group(startRun)

'>' > out(run) dup use(inRun)

group(inRun)

'</Run>' > dup use(main)

'|b' > '</Run>' nl out(run) ' namedStyle="Emphasized Text">'

'|r' > '</Run>' nl out(run) '>'

This table would convert

<Run ws="es">This is a |btest|r with |bemphasized text</Run>

to

<Run ws="es">This is a </Run>

<Run ws="es" namedStyle="Emphasized Text">test</Run>

<Run ws="es"> with </Run>

<Run ws="es" namedStyle="Emphasized Text">emphasized text</Run>

You could use similar changes to convert the bar code to some other writing system if that were

desirable.

