

6/13/2013 1

FieldWorks database model
Ken Zook

December 10, 2008

Contents
1 Introduction ... 2

2 FieldWorks database model .. 2

2.1 Metadata .. 2

2.1.1 Module$.. 3

2.1.2 Class$.. 3

2.1.3 ClassPar$... 3

2.1.4 Field$.. 4

2.1.5 Version$.. 5

2.1.6 Other tables ... 5

2.2 Classes... 6

2.2.1 CmObject .. 6

2.2.2 Subclasses ... 7

2.3 Properties .. 8

2.3.1 Basic properties ... 8

2.3.1.1 Strings ... 8

2.3.1.1.1 Unicode/BigUnicode... 9

2.3.1.1.2 String/BigString .. 9

2.3.1.1.3 MultiUnicode .. 10

2.3.1.1.4 MultiString .. 11

2.3.1.1.5 MultiBigString .. 12

2.3.1.1.6 MultiBigUnicode .. 12

2.3.1.2 Other basic properties ... 12

2.3.2 Owning relationships .. 14

2.3.3 Reference relationships ... 14

2.3.3.1 Atomic references ... 14

2.3.3.2 Sequence and collection references .. 15

2.4 Views .. 15

2.5 Stored procedures.. 15

2.6 Functions ... 16

3 Database Management Tool (dbmt).. 17

4 Working with SQL .. 18

4.1 Creating objects .. 19

4.2 Deleting objects .. 20

4.3 Rearranging objects .. 20

4.4 Display information from possibility list .. 21

4.5 Display headwords from dictionary .. 22

4.6 Add translations to lists ... 22

4.7 Reload anthropology list ... 24

4.8 Delete orphaned entries... 24

4.9 Delete Scripture from a FieldWorks project ... 25

FieldWorks database model Page 2

6/13/2013

4.10 Delete all items from a possibility list .. 26

4.11 Exploring interlinear text .. 26

4.12 Baseline and Translations from interlinear text .. 30

4.13 Splitting an interlinear text.. 31

4.14 Correcting interlinear analyses ... 32

4.15 Merging Lexical Relations .. 33

1 Introduction
Metadata, stored procedures, and data for each FieldWorks project are stored in a SQL

Server database. There are several methods for accessing data directly from the database.

 SQL queries. These can be executed directly through .NET SqlConnection, ODBC,

OLEDB, or the FieldWorks OleDbEncap COM interface. They can also be executed

from a file via the db program.

 ISilDataAccess, IVwOleDbDa, and IVwCacheDa COM interfaces that allow access

in a more object-oriented way than pure SQL queries. See

http://fieldworks.sil.org/objectweb for details on these interfaces.

 FieldWorks Data Objects (FDO). This is a .NET assembly of classes you can use to

access and manipulate data in the FieldWorks database. It serves as an object-oriented

layer between the relational database and the user application. FDO is discussed in

Python database access.doc.

Microsoft SQL Server is a relational database made up of many tables, where each table

has a set of columns or fields. Fields may contain actual data, or links to data in other

tables. Key fields for each table are indexed for rapid access to the data.

SQL Server is a robust system that provides

 protection if power fails

 remote access

 triggers and constraints to limit invalid data

 backup and restore capabilities, and

 database maintenance programs.

Note: In order to support the possibility of using the Firebird database engine in addition

to Micrsoft SQL Server, and due to limited length of names in Firebird, some class,

property, and procedure names were shortened in FieldWorks 5.4 compared to earlier

versions. The spreadsheet, Model name changes.xls, lists the changes that were made. If

you had queries for older versions you may need to make a few of these name changes

for it to continue to work in FieldWorks 5.4 and later.

2 FieldWorks database model
This section discusses the way the FieldWorks model is mapped to SQL Server relational

database tables.

2.1 Metadata

Metadata tables are used to define FieldWorks object structure and hold other

information that is not direct user data.

FieldWorks database model Page 3

6/13/2013

2.1.1 Module$

FieldWorks objects are defined in modules. The modules are defined in the

Module$ table:

select * from Module$

Id Name Ver VerBack
0 Cellar 1 1
3 Scripture 1 1
4 Notebk 1 1
5 Ling 1 1
6 LangProj 1 1

The Id and Name are the only relevant parts of this table. The Module Ids are

incorporated into the Class Ids.

2.1.2 Class$

Classes are defined in the Class$ table. There are currently 173 classes defined in this

table. Only a few classes are illustrated here:

select * from Class$

Id Mod Base Abstract Name
0 0 0 True CmObject
5 0 0 True CmMajorObject
7 0 0 False CmPossibility
8 0 5 False CmPossibilityList
5005 5 5 False LexDb
5035 5 0 True MoForm
5045 5 5035 False MoStemAllomorph
5049 5 7 False PartOfSpeech

 The Id column is the Class Id that is incorporated into property names and is often

abbreviated “clsid” or “clid”.

 The module that defines this class is given in the Mod column.

 The Base column identifies the superclass for this class. For example,

CmPossibilityList (class = 8) is a subclass of CmMajorObject (class = 5), which is a

subclass of CmObject (class = 0).

 When Abstract is True, it means there are no instances of this class—only subclasses

can exist.

 CmObject is an abstract class with an Id of 0 and is the only class that does not inherit

from some other class.

2.1.3 ClassPar$

The ClassPar$ table provides a quick way to find all the superclasses for a given class:

select * from ClassPar$

Src Dst Depth
0 0 0
8 8 0
8 5 1
8 0 2
5045 5045 0

FieldWorks database model Page 4

6/13/2013

5045 5035 1
5045 0 2

Src and Dst are Class Ids. For example, this shows that CmPossibilityList (class = 8) is 2

inheritance levels from CmObject (class = 0) with CmMajorObject (class = 5) in between.

2.1.4 Field$

The Field$ table provides information for each FieldWorks property (field). There are

currently 816 fields defined in this table.

select * from Field$

Id Type Class DstCls Name Custom
5001 16 5 Name 0
8004 1 8 IsSorted 0
8008 27 8 7 Possibilities 0
8010 16 8 Abbreviation 0
8014 2 8 ItemClsid 0

 Built-in fields (Custom = 0) currently only use a subset of the columns in Field$.

 The Field Id is derived from the Class Id and is often abbreviated “flid”.

 The Type field is described in Conceptual model overview.doc.

This is a summary of the types:

1 Boolean
2 Integer
3 Numeric
4 Float
5 Time
6 Guid
7 Image
8 GenDate
9 Binary
13 String
14 MultiString
15 Unicode
16 MultiUnicode
17 BigString
18 MultiBigString
19 BigUnicode
20 MultiBigUnicode
23 OwningAtom
24 ReferenceAtom
25 OwningCollection
26 ReferenceCollection
27 OwningSequence
28 ReferenceSequence

 In this sample, the name for the CmPossibilityList comes from the MultiUnicode

(type = 16) Name field of the CmMajorObject superclass (class = 5001). The

Possibilities field is an owning sequence (type = 27) that holds instances of

CmPossibility (class = 7) or its subclasses.

 The Class column identifies the class to which this property belongs.

 If the property is an owning or reference property, DstCls lists the type of class (or

subclass) that can be held in this property.

FieldWorks database model Page 5

6/13/2013

For custom fields, the remaining columns of Field$ are also used.

 CustomId: This is a GUID that is currently not used.

 Min: For integers, this can specify the minimum value.

 Max: For integers, this can specify the maximum value.

 Big: This may be unused, since the type already identifies big versions.

 UserLabel: This is the name users define, and what they see in the UI.

 HelpString: This is the description of the field.

 ListRootId: For reference properties, this holds the CmObject Id of the possibility list

that provides choices for this reference property.

 WsSelector: This determines the default writing systems to display:

-1 first analysis writing system

-2 first vernacular writing system

-3 all analysis writing systems

-4 all vernacular writing systems

-5 all analysis then all vernacular writing systems

-6 all vernacular then all analysis writing systems

 XmlUI: This may be unused. The idea was to have a place to store XML code that

would determine how this field was displayed, much like the code usually in

*Parts.xml files under Language Explorer\Configuration.

This is one example of a Custom Field. The least significant 3 digits of the Field Id will

always be 500 or more for custom fields, and Custom is always set to 1:

Id 5002500
Type 13
Class 5002
DstCls
Name custom
Custom 1
CustomId d9923cb3-fcb0-4628-aa52-13cbcc7186e8
Min
Max
Big False
UserLabel Plural
HelpString Plural form for this entry.
ListRootId
WsSelector -2
XmlUI

2.1.5 Version$

This table has several columns relating to the database version. At this point, the only

value used is DbVer that gives the database version for this database. FieldWorks

programs check this number to verify that the database is the desired version.

2.1.6 Other tables

 Sync$: This table is used to synchronize changes to a database when more than one

program is using the database.

 ObjInfoTbl$: This is a temporary table used during some stored procedures.

 ObjListTbl$: This is a temporary table used during some stored procedures.

FieldWorks database model Page 6

6/13/2013

2.2 Classes

2.2.1 CmObject

The database has a separate table for every class. CmObject is the base table that has a

row for every FieldWorks object used in the database. All object ownership details are

stored in CmObject. It has the following columns:

 Id: This is an integer holding the Object Id that is the main reference used within the

database. Every object has a unique Id. In code, this is often referred to as HVO

(handle to a viewable object). It is only used within a single database and is not saved

to FieldWorks XML files.

 Guid$: This is a globally unique identifier for every object in the database.

 Class$: This is an integer holding the Class Id for this object, which matches an Id in

Class$.

 Owner$: This is the CmObject Id that owns this object.

 OwnFlid$: This is an integer holding the Field Id on Owner$ that owns this object.

This matches an Id in Field$.

 OwnOrd$: For sequence properties, this is an integer giving the order within the

property. It is not required that these numbers be consecutive.

 UpdStmp: This is a “timestamp” data type that is guaranteed to be unique. It is

changed automatically any time a property in the class is changed and is part of the

strategy for identifying when some other program has changed this object while your

program has it in its memory cache.

 UpdDttm: This is a “smalldatetime” that is updated automatically when changes are

made in a class.

When an object is dumped to Fieldworks XML, the Id, UpdStmp, and UpdDttm columns

are not dumped. Thus, when a file is loaded into the database from XML, there is no

guarantee that the Id will be the same as the dumped file. In the database, the Field Id is

used to reference related objects. In the XML file, the GUID is used for references.

Class$, Owner$, OwnFlid$, and OwnOrd$ do not get dumped directly to the XML file,

but they are inherent in the structure that gets dumped, so this information is not lost.

Here are a few examples with the GUID truncated to save space:

select * from CmObject

Id Guid$ Class$ Owner$ OwnFlid$ OwnOrd$ UpdStmp UpdDttm
1 2465f3c4… 6001 0x2ECB3 10/21/2006 3:32:00 PM
4898 c924bfce… 8 1 6001049 0x2DC01 4/26/2006 2:23:00 PM
4899 63403699… 66 4898 8008 1 0x2E10A 4/26/2006 2:24:00 PM
5864 ba06de9e… 66 4898 8008 2 0x2E174 4/26/2006 2:24:00 PM
7329 f4491f9b… 66 4898 8008 3 0x2E1FD 4/26/2006 2:24:00 PM
4900 999581c4… 66 4899 7004 1 0x2E10B 4/26/2006 2:24:00 PM
5096 b47d2604… 66 4899 7004 2 0x2E11B 4/26/2006 2:24:00 PM

 In this example, object 1 is the root LangProject (class = 6001).

 Owner$, OwnFlid$, and OwnOrd$ are all null since the language project does not

have an owner.

FieldWorks database model Page 7

6/13/2013

 Object 4898 is a CmPossibilityList (class = 8) that is owned by object 1 (LangProject)

in the SemanticDomainList property (field = 6001049). It is an atomic property, so it

does not have an OwnOrd$.

 Objects 4899, 5864, and 7329 are all CmSemanticDomain objects (class = 66) owned

directly by the semantic domain list (id = 4898) in the Possibilities property (field =

8008) of CmPossibilityList.

 OwnOrd$ indicates these are the first three items in the list.

 Objects 4900 and 5096 are also CmSemanticDomain objects (class = 66) owned by

the first CmSemanticDomain (id = 4899) in the semantic domain list. They are owned

in the SubPossibilities property (field = 7004) of the CmSemanticDomain.

2.2.2 Subclasses

Every class has its own table in the database with columns depicting fields that are

defined on that class. To get full information for a particular object, you need to look at

two or more tables since every class is a subclass of CmObject, and maybe other classes

as well. For example, consider CmSemanticDomain:

select * from CmSemanticDomain where id = 4899

id LouwNidaCodes OcmCodes
4899 1A Universe, Creation; 14 Physical Events and States 772 Cosmology;…

This query shows the content of properties defined for object 4899 directly on the

CmSemanticDomain class.

select id, DateCreated, ForeColor, Hidden, IsProtected from CmPossibility where id = 4899

id DateCreated ForeColor Hidden IsProtected
4899 4/26/2006 2:23:30 PM -1073741824 False False

This query returns information for the same object 4899 that is defined on the

CmPossibility class, which is the superclass of CmSemanticDomain. The select has been

limited here to certain fields, since using “*” to get all fields would return Id, SortSpec,

Confidence, Status, DateCreated, DateModified, HelpId, ForeColor, BackColor,

UnderColor, UnderStyle, Hidden, and IsProtected. This is too much to display on one

line in this document.

select * from CmObject where id = 4899

Id Guid$ Class$ Owner$ OwnFlid$ OwnOrd$ UpdStmp UpdDttm
4899 63403699… 66 4898 8008 1 0x2E10A 4/26/2006 2:24:00 PM

This query returns the information for the same object 4899 that is defined on the

CmObject class, which is the superclass of CmPossibility and also a superclass of

CmSemanticDomain.

To get all of the information for this object in one query, FieldWorks provides a view for

every class that is defined in the database. The name of the view is the name of the class

with underscore appended to the end. For CmSemanticDomain, the generated view is

defined as:

select [CmPossibility_].*, [CmSemanticDomain].[LouwNidaCodes],
[CmSemanticDomain].[OcmCodes] from [CmPossibility_]
join [CmSemanticDomain] on [CmPossibility_].[Id] = [CmSemanticDomain].[Id]

FieldWorks database model Page 8

6/13/2013

In this query CmPossibility_ joins to CmObject, so using this view, you can get all

information with this query:

select * from CmSemanticDomain_ where id = 4899

The result of the query returns columns Id, Guid$, Class$, Owner$, OwnFlid$, OwnOrd$,

UpdStmp, UpdDttm, SortSpec, Confidence, Status, DateCreated, DateModified, HelpId,

ForeColor, BackColor, UnderColor, UnderStyle, Hidden, IsProtected, LouwNidaCodes,

and OcmCodes. These are too long to display in this document, but just as in regular

tables, you can select specific fields from this view as well:

select id, owner$, DateCreated, LouwNidaCodes from CmSemanticDomain_ where id = 4899

id owner$ DateCreated LouwNidaCodes
4899 4898 4/26/2006 2:23:30 PM 1A Universe, Creation; 14 Physical Events and States

These queries on the actual tables only return some of the properties for a class.

Properties that return more than one row (such as multistrings, reference collections, and

sequences) require separate queries to return this information. This is discussed in the

next section.

2.3 Properties

Properties for classes are either stored in columns directly on the class, or stored in

separate tables that must be joined during retrieval.

2.3.1 Basic properties

2.3.1.1 Strings

SQL queries use “order by” clauses to sort returned values on one or more fields. When

ordering by FieldWorks string properties, you can use the “order by” clause for Unicode,

String, MultiUnicode, and MultiString values. SQL Server does not support the “order

by” clause when using the ntext datatype that is used for BigUnicode, BigString,

MultiBigUnicode, and MultiBigString. This means you cannot sort on these types of

properties. Also, be aware that SQL sorting is independent of ICU, so it does not follow

the sort order specified for your writing systems. Here are two examples:

select * from LexSense order by Source
select * from StTxtPara order by Contents – fails

The first query works fine since Source is a String property. The second query will fail

with an error message because Contents is a BigString property.

SQL queries use “where” clauses to limit the number of returned rows. “Where” clauses

are also limited when using “ntext” values:

select * from LexSense where source is not null
select * from LexSense where source = N'Source information'
select * from LexSense where source like N'%information%'
select * from LexSense where source > N'm'

select * from StTxtPara where contents is not null
select * from StTxtPara where contents = N'is not obligatory' -- fails
select * from StTxtPara where contents like N'%not%'
select * from StTxtPara where contents > N'b' -- fails

FieldWorks database model Page 9

6/13/2013

The first four queries above are all valid, because Source is a String property and can be

equated or compared with other strings. Two of the last four queries fail with error

messages because Contents is a BigString property. “ntext” strings cannot be equated or

compared with other strings. They can be checked for being missing and can use the

“like” clause. The “%” characters in string comparisons and “like” clauses are wildcards

that can mean zero or more characters. Thus, the second-to-last query finds all strings

containing “not” anywhere in the string.

When specifying strings, the N prefix indicates that the string is a Unicode string. Since

all FieldWorks data is Unicode, it is best to use the N prefix for any string. Otherwise,

SQL Server will convert the string to Unicode using the current code page, which may or

may not be desirable.

When entering strings, you can use the “nchar” command (with decimal values) to embed

single Unicode characters. You can also prepare the text in ZEdit in a UTF-8 window,

Word, or some other Unicode editor and paste it in. These two strings are identical:

N'hi' + nchar(331) + N'xogabibi'
N'hiŋxogabibi'

When you get the results of a query, you can paste them into ZEdit in a UTF-8 window to

explore the code points. You can also use SQL Unicode and substring commands. The

following query returns 331, which is the decimal value of the “eng” character (U+014b):

declare @str nvarchar(400)
set @str = N'hiŋxogabibi'
select unicode(substring(@str,3,1))

2.3.1.1.1 Unicode/BigUnicode

Unicode and BigUnicode strings are stored as a column in the class table that defines the

property and are accessed in the same way. Unicode is stored as “nvarchar(4000)” and

BigUnicode strings are stored as “ntext”:

select id, HelpId from CmPossibility order by HelpId

id HelpId
19 MaterialNotRelevant
22 Orientation
18 PVProjectVariables

This query returns the HelpId Unicode property on CmPossibility. These properties do

not have any inherent writing system or formatting. They are just a sequence of Unicode

characters.

The following query demonstrates setting a Unicode or BigUnicode string. Be sure to

include a where statement or all possibilities will be changed at once.

update CmPossibility set HelpId = N'NewName' where id = 198

2.3.1.1.2 String/BigString

String and BigString strings have Unicode characters, but also have formatting associated

with the string. Every String or BigString column in a class table also has a

corresponding column with “_Fmt” appended to the property name. This format column

contains compressed binary information that represents things such as writing system,

FieldWorks database model Page 10

6/13/2013

styles, direct formatting, and embedded objects. SQL queries do not provide the power to

decompress this binary information into something useful. FwKernel.dll contains TsString

COM interfaces that are used to interpret this information. The format information

contains offsets into the string, so changing the text without updating the formatting

causes corrupted data. As a result, SQL queries should not attempt to change String or

BigString fields. SQL queries will not be able to determine any embedded information on

these strings.

Strings are stored as “nvarchar(4000)” and the associated format as “varbinary(8000)”.

BigStrings are stored as “ntext” and the associated format as “image”:

select Id, Contents, Contents_Fmt from StTxtPara

Id Contents Contents_Fmt
2933 Derivational operations 0x010000000000000000000000010006E57E0000
3026 Example (English) 0x010000000000000000000000010006E57E0000

This query returns the contents and formatting for StTxtPara. The writing system is

embedded in “Contents_Fmt”.

Strings and BigStrings should not be modified using SQL code, because it cannot handle

the compressed binary format. Also, the Contents_Fmt should never be left null because

every String in FieldWorks should have a writing system, which is stored in the

Contents_Fmt. There are some exceptions. If your string has no embedding, and there is

already a Fmt field for a similar string with no embedding in the same writing system, the

other Fmt could be used to set the new string. In the example above, the Fmt is the same

for both strings because it just contains the overall writing system. There is no other

embedding. If a string has any other embedding, you should not attempt to update it with

SQL code.

2.3.1.1.3 MultiUnicode

MultiUnicode properties contain a collection of Unicode strings that are translations of

the same string in different languages and/or writing systems. Each writing system can

only occur once in a MultiUnicode property. You can have English and Spanish strings,

but not two English strings. In order to increase efficiency, every MultiUnicode property

is implemented as a separate table in the database with the class name and property name

separated by an underscore. The table has 3 columns:

 Obj: This is the Object Id from CmObject for the object that owns this string.

 Ws: This is the Object Id for the LgWritingSystem.

 Txt: This is the Unicode string contents. It is stored as “nvarchar(4000)” (except

WfiWordform_Form and MoForm_Form are limited to 300 because they are

indexed):
select * from CmPossibility_Name

Obj Ws Txt
3 32490 Adverbio
3 32485 Adverb
3 32488 Adverbe
4 32490 Nombre
4 32485 Noun
4 32488 Nom

FieldWorks database model Page 11

6/13/2013

This query returns the names of CmPossibilty items including subclasses of CmPossibilty.

In this case, the first CmPossibilty (Id = 3) has three translations for the name in Spanish

(Ws = 32490), English (Ws = 32485), and French (Ws = 32488). To determine what

writing system values mean, you can query the MultiUnicode name for LgWritingSystem:

select * from LgWritingSystem_Name

Obj Ws Txt
32485 32485 English
32488 32485 French
32490 32485 Spanish
32495 32485 Portuguese
32567 32485 Lela-Teli

Alternatively, you could join the two tables in a single query, changing the labels to make

them more meaningful:

select cpn.obj Id, lwn.txt Language, cpn.txt Name from CmPossibility_Name cpn
join LgWritingSystem_Name lwn on lwn.obj = cpn.ws

Id Language Name
3 Spanish Adverbio
3 English Adverb
3 French Adverbe
4 Spanish Nombre
4 English Noun
4 French Nom

To modify a MultiUnicode string, use the SetMultiTxt$ stored procedure. The inputs

should be the Field Id, Object Id of the owner, writing system, and the string:

exec SetMultiTxt$ 7001, 3, 40719, N'accessoires'

2.3.1.1.4 MultiString

All MultiString properties are stored in a single MultiStr$ table that has the following

columns:

 Flid: This is the Field$ Id of the field that holds the string on Obj.

 Obj: This is the Object Id from CmObject for the object that owns this string.

 Ws: This is the Object Id for the LgWritingSystem.

 Txt: This is the String contents. It is stored as “nvarchar(4000)”.

 Fmt: This is the formatting for the string. It is stored as “varbinary(8000)”.

You can access this table directly. An easier way is to use built-in views for all

MultiStrings that makes it look similar to a MultiUnicode table. This is the view

definition for LexSense_Definition:

select [Obj], [Flid], [Ws], [Txt], [Fmt]
FROM [MultiStr$]
WHERE [Flid] = 5016005

Using this view, you do not have to figure out what Field Id to use since it is built into the

view. Here is a query to list the definitions in senses using this view:

select * from LexSense_Definition

Obj Flid Ws Txt Fmt

6244 5016005 98507 的（表领属） 0x010000000000000000000000010006CB800100

FieldWorks database model Page 12

6/13/2013

6244 5016005 98509 follows a pronoun… 0x010000000000000000000000010006CD800100

6306 5016005 98507 本 0x010000000000000000000000010006CB800100

6306 5016005 98509 measure word for… 0x010000000000000000000000010006CD800100

This shows Chinese (Ws = 98507) and English (Ws = 98509) definitions for two

different senses (6244 and 6306). The format strings are different because the writing

systems are different.

Setting MultiStrings has the same cautions as discussed with String because SQL cannot

create the compressed Fmt field. If a string has no embedding and you already have an

Fmt field to use, update a MultiString with the SetMultiStr$ stored procedure. This takes

a Field Id, Object Id of the owner, writing system, the string, and the string format:

exec SetMultiStr$ 5016005, 6049, 40733, N'hello world',
 0x0100000000000000000000000100061D9F0000

2.3.1.1.5 MultiBigString

MultiBigString works similarly to MultiString. The difference is that they use the

MultiBigStr$ table which has the same columns as MultiStr$. The only difference in the

tables is that the Txt column uses “ntext” and the Fmt column uses “image”. Built-in

views for MultiBigString properties work the same as MultiString views.

Setting MultiBigStrings has the same cautions as discussed with String because SQL

cannot create the compressed Fmt field. If a string has no embedding and you already

have a Fmt field to use, update a MultiBigString with the SetMultiBigStr$ stored

procedure. This takes a Field Id, Object Id of the owner, writing system, the string, and

the string format.

2.3.1.1.6 MultiBigUnicode

FieldWorks currently does not use MultiBigUnicode, but it is similar to MultiBigString.

It uses MultiBigTxt$ to store strings for all properties. There is no Fmt column since this

stores Unicode strings.

MultiBigUnicode strings can be altered using the SetMultiBigTxt$ stored procedure. This

takes a Field Id, Object If of the owner, writing system, and the string.

2.3.1.2 Other basic properties

Outside of strings, all other basic properties are stored in columns in the class on which

they were defined. You can use an “order by” clause in the select statement for any of

these properties.

Booleans are stored as bit data types in the database:

select Id, ExcludeAsHeadword from LexEntry

Id ExcludeAsHeadword
6324 False
6328 True

The following query is an example that updates a Boolean. (True = 1 and False = 0.)

Include a “where” statement to avoid changing all entries at once:

update LexEntry set ExcludeAsHeadword = 1 where id = 6047

FieldWorks database model Page 13

6/13/2013

Integers are stored as “tinyint” (1 byte), “smallint” (2 bytes), or “int” (4 bytes), depending

on the minimum and maximum settings. The default is 4 bytes:

select Id, HomographNumber from LexEntry

Id HomographNumber
6268 1
6272 0
6289 2

The following query is an example that updates an integer. Include a “where” statement

to avoid changing all entries at once:

update LexEntry set HomographNumber = 1 where id = 6047

Time is stored as a “datetime” in the database:

select Id, DateCreated from LexEntry

Id DateCreated
6224 8/7/2003 8:42:42 AM
6228 8/13/2003 10:37:25 AM

The first query below is an example that updates a time to a specific time. The second

query sets the time to the current time. Include a “where” statement to avoid changing all

entries at once:

update LexEntry set DateCreated = '12/23/2004 9:20 PM' where id = 6047
update LexEntry set DateCreated = getdate() where id = 6047

GUIDs are stored as “uniqueidentifiers” in the database:

select Id, Guid$ from CmObject

Id Guid$
1 2465f3c4-30ec-4b5b-bf0f-9aa0ba23634a
2 d7f7150c-e8cf-11d3-9764-00c04f186933

The following queries are examples that update a GUID. The first one sets it to a specific

value. The second query creates a new GUID and sets the property to the new GUID.

Include a “where” statement to avoid changing all objects at once:

update CmObject set Guid$ = '2465f3c4-30ec-4b5b-bf0f-9aa0ba23634b' where id = 1
update CmObject set Guid$ = newid() where id = 1

GenDates are stored as integers in the database:

select Id, DateOfEvent from RnEvent

Id DateOfEvent
6842 193112111
6857 196000000
6860 0

The following query is an example that updates a GenDate. Include a “where” statement

to avoid changing all events at once:

update RnEvent set DateOfEvent = 193112111 where id = 6860

Binary data is stored as “varbinary(8000)” in the database:

select Id, StyleRules from StPara

FieldWorks database model Page 14

6/13/2013

Id StyleRules
6850 0x00018502064E006F0072006D0061006C00
7017 0x02016202E204008008018502064E006F0072006D0061006C00

Caution:StyleRules are compressed binary information that SQL cannot decipher, so it is

highly unlikely that you would ever want to set StyleRules from SQL. The following

query is an example that clears a binary field. Include a “where” statement to avoid

changing all styles at once:

update StPara set StyleRules = null where id = 6850

2.3.2 Owning relationships

As discussed in the CmObject section, owning relationships are stored in Owner$,

OwnFlid$, and OwnOrd$ fields in CmObject. These fields are left null for the few

unowned objects in the database. For owning sequences, OwnOrd$ gives the order of the

objects in the sequence. For owning collections, OwnOrd$ is null.

You can use CmObject directly to list ownership information. This is particularly useful

if you do not know what object or property owns a given item. However, if you just want

to find all the objects owned in a particular attribute of a class, a simpler way is to use a

generated built-in view for all owning attributes (including atomic) that consists of the

owning class name and property name, separated by an underscore.

This view is for LexEntry_Senses:

select [Owner$] as [Src], [Id] as [Dst], [OwnOrd$] as [Ord]
FROM [CmObject]
WHERE [OwnFlid$] = 5002011

When you use one of these views, you get a list of Src (owner) ids, Dst (owned) ids, and

Ord (order) columns. If the property is atomic or is a collection rather than a sequence, it

omits the Ord value:

select * from LexEntry_Senses order by Src, Ord

Src Dst Ord
6047 6049 1
6047 6050 2

This view states that LexEntry 6047 owns senses 6049 and 6050—in that order.

2.3.3 Reference relationships

2.3.3.1 Atomic references

Atomic references are CmObject Ids stored as an integer on the class that has that

property:

select Id, SenseType from LexSense

Id SenseType
6308 6336

In this case, LexSense (id = 6308) references a CmPossibility (id = 6336) in the Sense

Types list.

FieldWorks database model Page 15

6/13/2013

2.3.3.2 Sequence and collection references

Collection and Sequence reference properties are implemented as separate tables in the

database. The name is the class name and property name, separated with an underscore.

select * from LexReference_Targets

Src Dst Ord
6820 6308 1
6820 6099 2
6820 6270 3

Targets is a sequence reference property. In this example, LexReference (id = 6820)

references three senses (6308, 6099, and 6270—in that order) via the Targets property.

Reference collections work the same way, except they omit the Ord values.

2.4 Views

SQL Server provides a way to simplify accessing data by taking common queries and

packaging them into “views”. FieldWorks automatically builds many views based on

class and property names. These were discussed earlier. Here is a summary:

 Class_: Returns a single row with all fields for a class and its superclasses (see

section on Subclasses).

 Class_Property: Returns an ownership table for all owning properties (see section on

Owning relationships).

 Class_Property: Returns a table for MultiStrings, MultiBigStrings, and MultiUnicode

properties (see section on MultiStrings).

Another useful view is PropInfo$. This view combines the most useful information from

Class$ and Field$ into a single table:

select * from PropInfo$ order by class, property

Class Clid Property Flid Type Tid Signature Custom
ChkTerm 5125 Occurrences 512500 OwningSequence 27 ChkRef false
ChkRef 5116 KeyWord 5116002 String 13 false

This table lists the Class Name and Id number, the Property Name and Field Id, the type

of property and Id, the signature for owning/reference properties, custom flag, and

Custom Id. FieldWorks classes and properties.xls is a spreadsheet that contains this

information for ready access.

The following query lists the names of all views:

select * from sysobjects where type='V'

You can see the source code for a view using the following query:

select text from syscomments where id=object_id('LexSense_Senses')

Copy the results from the text field and paste it into ZEdit or some other editor to see

more than the first line.

2.5 Stored procedures

FieldWorks provides many stored procedures for special purposes, particularly updating

the database.

FieldWorks database model Page 16

6/13/2013

Caution: Be extremely cautious with any updates! It is easy to damage your data to the

point where FieldWorks programs will fail.

The following query lists the names of all stored procedures:

select * from sysobjects where type='P'

You can see the source code for a stored procedure using the following query:

select text from syscomments where id=object_id('MakeObj_WfiWordform')

Copy the results from the text fields and paste them into ZEdit or some other editor to see

more than the first line. If it is too long, it will come in several parts with an extra Return

between each section.

The StoredProcs.htm file documents many of the FieldWorks stored procedures. It is fairly

accurate, although not totally up-to-date. If there is any doubt, check the source code.

A number of stored procedures and functions have a “grfcpt” argument. This is an integer

with a bit for each kind of owning and reference property desired:

Owning Atomic 8388608
Reference Atomic 16777216
Owning Collection 33554432
Reference Collection 67108864
Owning Sequence 134217728
Reference Sequence 268435456
All Owning 176160768
All Reference 352321536
All Owning & Reference 528482304

Some stored procedures and functions also have a “riid” argument. This is a Class Id that

can be used to filter the returned results. It will return any instances of the specified class

or any of its subclasses.

2.6 Functions

FieldWorks provides about 24 functions for special purposes. These can be used in

various places in SQL queries to return a single value or data as though it were a table,

even though it is not reading a literal table.

The following query lists the names of all functions:

select * from sysobjects where type = 'TF' or type = 'FN'

You can see the source code for a function using the following query:

select text from syscomments where id=object_id('fnGetOwnedObjects$')

Copy the results from the text fields and paste them into ZEdit or some other editor to see

more than the first line. If it is too long, it will come in several parts with an extra Return

between each section.

The file, StoredProcs.htm documents some of the FieldWorks functions. It is fairly

accurate, although it is missing some details and has some errors. If there is any doubt,

check the source code.

FieldWorks database model Page 17

6/13/2013

For an example using a function, see the section on “Display information from possibility

list”.

3 Database Management Tool (dbmt)
Microsoft provides SQL Server Management Studio when you have full versions of SQL

Server. This provides the ability to execute SQL queries, view tables, and views, and

make basically any change you need to a database. This program cannot be redistributed.

In your C:\Program Files\SIL\FieldWorks directory, FieldWorks provides dbmt.exe. This

gives the ability to execute SQL queries on the database and return the results in a table.

This is very useful if you need to investigate something directly in the database, or make

updates.

Caution: Be extremely cautious with any updates! It is easy to damage your data to the

point where FieldWorks programs will fail.

When you start the program, it brings up a “Connect to SQL Server” dialog. The default

server is “.\SILFW”, which will open your FieldWorks instance of SQL Server 2005

Express. You can also type in paths to open databases on other machines as well (e.g., ls-

zook\SILFW). On your local machine, log on with “Windows authentication”. For

remote machines, use “SQL Server authentication”. For the logon, type “FwDeveloper”

and for the password, type “Careful”. You also need to use SQL Server authentication if

you are not logged on as a system administrator.

If you are running Vista, you need to run dbmt as an administrator. Here’s how to start it:

1. Click the Start button

2. In the edit box above the Start button type dbmt

3. dbmt should show up in the program list above the edit box. Right-click this and

choose Run as Administrator.

4. If a dialog comes up asking if you want to run the program, click Allow.

5. At this point you should be able to run dbmt normally.

After you are logged on, make sure the combo at the top of the window is set to the

desired database. (CAUTION! Never modify the master table or you may need to

uninstall SQL Server 2005 and reinstall it to get things to work again.) With the desired

database selected, type or paste in queries and execute them by using F5 or clicking the

green triangle on the toolbar. The results from the query show up in the bottom pane. You

can select one row or one column and copy it to the clipboard to save the results. Click

the open box to the left of the column headings to select the entire table and save it. Use

Ctrl+C to copy it to the clipboard and Ctrl+V to paste it into Excel, ZEdit, Word, or some

other program. Any data returned in this way is Unicode data. If you use ZEdit, make

sure it is open to either UTF-8 or UTF-16 mode.

Dbmt does not parse a query ahead of time, so it will not execute multiple batches in a

single query as SQL Server Management Studio can do. Multiple batches are separated

by GO statements. The following example demonstrates one of these.

FieldWorks database model Page 18

6/13/2013

USE master
GO
Xp_readerrorlog

In order to execute these queries in SQL Server, you need to execute the code

consecutively between each GO statement. In this case, highlight the first line and press

F5, then highlight the third line and press F5.

Unlike SQL Server Management Studio, “dbmt” does not provide an object browser

window that allows you to explore things such as tables, views, and stored procedures.

Use this query to list their names:

select * from sysobjects where type ='x'
The “x” in this query can be one of the following:
 S: system tables
 U: user tables
 P: stored procedures
 V: views
 C: constraints
 PK: primary key
 TR: trigger

Use the following queries to get information about the columns and constraints of a table:

exec sp_MShelpcolumns 'LexEntry', @orderby = 'id'
exec sp_MStablekeys 'LexEntry'
exec sp_MStablechecks 'LexEntry'

The first query below lists triggers in the database, and the second displays the source

code for a particular trigger.

select * from sysobjects where type = 'TR' order by name
select text from syscomments where id=object_id(N'TR_LgWritingSystem_ObjDel_Del')

4 Working with SQL
Caution: As with any method for modifying the database outside of a FieldWorks

program, if you do not know what you are doing, you can inadvertently damage the data.

FieldWorks applications may no longer run or it could do damage in a way that will not

show up until later. Be extremely cautious about making any changes to the XML file.

Any time you plan to do this, make sure you first back up your project and check

carefully what you did before going on.

Several things can be done safely. It never hurts the database to execute “select” queries

because they do not change the database. Thus, you can extract any information from the

database without harm. The potential problems come with any “update”, “insert”, or

“delete” SQL commands, or any stored procedure that modifies the database. Some of the

issues are discussed in this section. Never change the structure of any of the tables.

For any questions on Microsoft Transact-SQL syntax, refer to SQL Server Books Online.

This can be freely downloaded from
www.microsoft.com/downloads/details.aspx?FamilyID=A6F79CB1-A420-445F-8A4B-

BD77A7DA194B&displaylang=en and installed on your machine. The installation file is

sqlbolsetup.msi (34.4Mb).

There are two ways to include comments in SQL code:

FieldWorks database model Page 19

6/13/2013

 Enclose the comments in /* comment */.

 Anything following two hyphens on a line is a comment.

4.1 Creating objects

Never create new objects by inserting them directly into CmObject or any of the class

tables. This always involves updating CmObject as well as subclass tables. You should

only insert new objects with one of the CreateObject stored procedures.

Caution! When some objects are created by a FieldWorks program, the C#/C++ code

automatically creates additional objects or presets certain values. If this additional

information is not set properly, it could cause the program to crash due to malformed data.

As a result, unless you have a good understanding of what should happen, you should not

attempt to add new objects.

The basic stored procedure for creating new objects is CreateOwnedObject$. See

StoredProcs.htm for details. This example appends a new LexSense to an entry with an Id

of 6047 and returns the Id and GUID of the new sense:

declare @newId int, @newGuid uniqueidentifier, @clid int, @flid int,
 @entryId int, @ownSeq int
set @ownSeq = 27
set @clid = 5016 -- LexEntry
set @entryId = 6047
set @flid = 5002011 -- LexEntry_Senses
exec CreateOwnedObject$ @clid, @newId output, @newGuid output, @entryId,
 @flid, @ownSeq, null
select @newId, @newGuid

There is a generated stored procedure for each class of the form MakeObj_LexEntry.

These procedures have arguments for all of the basic attributes for the class and its

superclasses. The arguments for the procedures are modified as you add or remove

custom fields. You can get a list of the arguments by looking at the source code (see the

“Stored procedures and functions” section). If objects contain any form of FieldWorks

String (as opposed to FieldWorks Unicode), do not use SQL to add these objects because

it cannot properly construct the Fmt portion of these strings. You can still use one of

these stored procedures to create an object if you let the txt and “fmt” arguments null. If

you need to add these kinds of objects, it is best done in XML (see FieldWorks XML

model.doc).

WfiWordform is one object that does not contain any String properties. Check out the

header for the source for this stored procedure to get the following arguments for the

method:

@WfiWordform_Form_ws int = null, @WfiWordform_Form_txt nvarchar(4000) = null,
@WfiWordform_SpellingStatus int = 0,
@WfiWordform_Checksum int = 0,
@Owner int = null,
@OwnFlid int = null,
@StartObj int = null,
@NewObjId int output,
@NewObjGuid uniqueidentifier output,
@fReturnTimestamp tinyint = 0,
@NewObjTimestamp int = null output

FieldWorks database model Page 20

6/13/2013

The following method will create a new WfiWordform, setting the name to “new

wordform” in the first vernacular writing system. It sets the SpellingStatus and Checksum

to 0. The new wordform is appended to the WordformInventory_Wordforms property

and the query returns an error code (0 = no errors), which is the Object Id and GUID of

the new object. Note the N prefix added to the form to indicate this is a Unicode string. In

this case, do not specify the new Id or GUID, but allow the program to generate these

values. Also ignore the last two arguments:

declare @errRet int, @vern int, @owner int, @clid int, @ownflid int,
 @newId int, @newGuid uniqueidentifier
select top 1 @vern = dst from LangProject_CurVernWss
select @owner = dst from LangProject_WordformInventory
select @clid = id from Class$ where name = 'WordformInventory'
select @ownflid = id from Field$ where name = 'Wordforms' and class = @clid
exec MakeObj_WfiWordform @vern, N'new wordform', 0, 0, @owner, @ownflid, null,
 @newId output, @newGuid output
set @errRet = @@error
select @errRet, @newId, @newGuid

Because of the restrictions on adding new objects via SQL, it is better to add them via

XML.

4.2 Deleting objects

Sometimes it is helpful to delete an object from the database via SQL.

Warning: Never do this by directly deleting rows from any class table!

Instead, use the stored procedure, “DeleteObjects”, which takes a string argument listing

one or more comma-separated object Ids. When an object is deleted by this procedure, all

objects owned by this object are also deleted. This includes all basic properties plus

strings for all of the deleted objects. It also removes any of the deleted object Ids from

any other objects that reference these objects.

This example uses a stored procedure to delete one object:

exec DeleteObjects '41189'

Caution! Never use this method to delete LgWritingSystems if there is any chance that

the writing system is being used by any data! This method does not clean up multistring

fields and has no way to clean up embedded strings. This will lead to certain crashes due

to defective data. The only safe way to delete writing systems is the XML approach. In

FieldWorks XML model.doc, see “Removing a writing system”.

4.3 Rearranging objects

There are several stored procedures discussed in StoredProcs.htm that enable moving

objects or references. If you need to do this, check the documentation for

MoveOwnedObject$, MoveToOwnedAtom$, MoveToOwnedColl$, MoveToOwnedSeq$,

ReplaceRefColl…, and ReplaceRefSeq....

FieldWorks database model Page 21

6/13/2013

4.4 Display information from possibility list

Use this query to get a list of top-level possibility items from a list (Semantic Domains

list here), and give the English name and abbreviation for each:

declare @ws int, @list int
select @ws = id from LgWritingSystem where ICULocale = 'en'
select @list = dst from LangProject_SemanticDomainList
select plp.dst Id, @ws Ws, pn.txt Name, pa.txt Abbreviation from
CmPossibilityList_Possibilities plp
left outer join CmPossibility_Name pn on pn.obj = plp.dst and pn.ws = @ws
left outer join CmPossibility_Abbreviation pa on pa.obj = plp.dst and pa.ws = @ws
where plp.src = @list

Id Ws Name Abbreviation
9944 40716 Universe, creation 1
10909 40716 Person 2
12374 40716 Language and thought 3
14263 40716 Social behavior 4
16541 40716 Daily life 5
17272 40716 Work and occupation 6
18779 40716 Physical actions 7
20009 40716 States 8
22259 40716 Grammar 9

This is just a small subset of the semantic domains. The rest are nested under these, up to

several levels. SQL does not handle recursion very well. In this case, since the semantic

domain list is the only list that uses CmSemanticDomain items, it is possible to get

around the recursion limitation by simply using the CmSemanticDomain table. Use the

outline number for sorting. To get a full list of all 1,792 domains, use this query:

declare @ws int
select @ws = id from LgWritingSystem where ICULocale = 'en'
select sd.id Id, @ws Ws, pa.txt Abbr, pn.txt Name from CmSemanticDomain sd
left outer join CmPossibility_Name pn on pn.obj = sd.id and pn.ws = @ws
left outer join CmPossibility_Abbreviation pa on pa.obj = sd.id and pa.ws = @ws
order by pa.txt

Id Ws Abbr Name
9944 40716 1 Universe, creation
9945 40716 1.1 Sky
9946 40716 1.1.1 Sun
9947 40716 1.1.1.1 Moon
9963 40716 1.1.1.2 Star
9975 40716 1.1.1.3 Planet
10007 40716 1.1.2 Air

If you have a hierarchical list that does not have a unique class name, a stored function,

fnGetOwnedObjects$, can help. It returns a temporary table with the desired information.

The third argument to the function is a mask (176160768) that indicates owned objects.

The 7
th

 argument (missing in StoredProcs.htm) indicates it should only return

CmPossibility (class = 7) items and subclasses:

declare @ws int, @list int
select @ws = id from LgWritingSystem where ICULocale = 'en'
select @list = dst from LangProject_SemanticDomainList
select oi.ObjId Id, @ws Ws, pn.txt Name, pa.txt Abbr

FieldWorks database model Page 22

6/13/2013

 from fnGetOwnedObjects$(@list, null, 176160768, 0, 0, 1, 7, 1) oi
left outer join CmPossibility_Name pn on pn.obj = oi.ObjId and pn.ws = @ws
left outer join CmPossibility_Abbreviation pa on pa.obj = oi.ObjId and pa.ws = @ws
order by oi.OrdKey

Id Ws Name Abbr
9944 40716 Universe, creation 1
9945 40716 Sky 1.1
9946 40716 Sun 1.1.1
9947 40716 Moon 1.1.1.1
9963 40716 Star 1.1.1.2
9975 40716 Planet 1.1.1.3
10007 40716 Air 1.1.2
10008 40716 Blow air 1.1.2.1
10024 40716 Weather 1.1.3

4.5 Display headwords from dictionary

A dictionary headword displays the citation form, if it exists, otherwise the lexeme form.

It also adds affix markers from the MorphType of the MoForm and displays the

homograph number if not 0. This query will return headwords for all entries in the first

vernacular writing system:

declare @vern int
select top 1 @vern = dst from LangProject_CurVernWss
select coalesce(t.Prefix collate SQL_Latin1_General_CP1_CI_AS, '') +
 coalesce(cf.Txt, f.txt) +
 coalesce(t.Postfix collate SQL_Latin1_General_CP1_CI_AS, '') +
 case le.HomographNumber
 when 0 then ''
 else cast(le.HomographNumber as varchar(3))
 end Headword
--select f.Txt lexeme, cf.Txt citation, le.HomographNumber homograph,
-- t.Postfix postfix, t.Prefix prefix
from LexEntry le
left outer join LexEntry_CitationForm cf on cf.Obj = le.id and cf.ws = @vern
left outer join LexEntry_LexemeForm lf on lf.Src=le.id
left outer join MoForm_Form f on f.Obj=lf.Dst and f.ws = @vern
left outer join MoForm mf on mf.Id=lf.Dst
left outer join MoMorphType t on t.Id=mf.MorphType

Headword
*himbilira1
nadra
ke=
=lo
-ul-
dok2

If you comment out the first select and uncomment the second, you get a table with

lexeme form, citation form, homograph number, postfix, and prefix. The two collate

clauses are necessary when concatenating strings with different collations.

4.6 Add translations to lists

To add translations for a large list of items such as names on the Semantic Domain list,

do the following:

FieldWorks database model Page 23

6/13/2013

1. Dump out the original names by using one of the techniques above.

2. Translate these names.

3. Massage this data into this format:

exec SetSemanticDomainName @anal, N'Sky', @vern, N'天空'

where the first name is the original English name and the second name is the

translation.

4. Execute the following query. This creates a temporary stored procedure that will

accept the step 3 commands. This stored procedure looks up a name in the analysis

writing system. It then modifies or inserts the vernacular name for the same item.

Here is the query to create the stored procedure:
CREATE proc [SetSemanticDomainName]
 @WsAnal int,
 @AnalTxt nvarchar(1000),
 @WsVern int,
 @VernTxt nvarchar(1000)
as
 declare @id int, @tmp int
 set @id = null
 select @id=sd.id from CmSemanticDomain sd
 join CmPossibility_Name pn on pn.obj = sd.id
 where pn.ws = @WsAnal and pn.txt = @AnalTxt
 if @id is not null begin
 set @tmp = null
 select @tmp=obj from CmPossibility_Name where obj = @id and ws = @WsVern
 if @tmp is null begin
 insert into CmPossibility_Name (obj, ws, txt) values (@id, @WsVern, @VernTxt)
 end else begin
 update CmPossibility_Name set txt = @VernTxt where obj = @id and ws = @WsVern
 end
 end

5. Execute a query with the massaged data, setting the writing systems accordingly.

Summary:
declare @anal int, @vern int
select @anal=id from LgWritingSystem where IcuLocale = 'en'
select @vern=id from LgWritingSystem where IcuLocale = 'zh'

exec SetSemanticDomainName @anal, N'The physical universe', @vern, N'物质世界'

exec SetSemanticDomainName @anal, N'Sky', @vern, N'天空'

……

6. Execute the following query to remove the temporary stored procedure:
if object_id('SetSemanticDomainName') is not null begin
 print 'removing proc SetSemanticDomainName'
 drop proc [SetSemanticDomainName]
 end
end

These three steps can all be stored in a single file with a GO between each section. It can

then be run in one step by using the “db exec” command, but it must be stored as UTF-16

for db exec to work properly (unless you can simply use ANSI).

FieldWorks database model Page 24

6/13/2013

4.7 Reload anthropology list

If you want to change your anthropology list for some reason, and you do not mind losing

any links that you have set up in FieldWorks to the existing anthropolofy codes (in Flex

or Data Notebook), you can use the following process to reload the list. If you have a lot

of links that you would not want to lose, there is another way using the FieldWorks XML

dump file that may work, depending on the situation.

To reload the anthro list:

1. Use File...Project Management...Backup and Restore to back up your project in case

anything goes wrong, then close all FieldWorks programs.

2. Start the dbmt program in your c:\Program Files\SIL\FieldWorks directory.

3. Click OK to the initial dialog, then select Ibwe (or your FieldWorks project) in the

combo box at the top.

4. Paste the following query into dbmt and press F5 to execute it.

 select * from LangProject_AnthroList

5. Note the number in the Dst column after executing the above query. Paste the

following query into dbmt, replacing 159 with the number in your Dst column, and

then execute it with F5.

 exec deleteObjects '159'

This step took 5 minutes on my fast machine, so it will probably take 2-3 times longer

on your machine. Just wait until it completes, even if it doesn't appear to be doing

anything.

6. Paste the following query into dbmt and execut it with F5

 declare @id int, @lp int, @guid uniqueidentifier

 select @lp = id from LangProject

 exec CreateOwnedObject$ 8, @id output, @guid output, @lp, 6001012, 23, null

7. Start Flex or Data Notebook on your FieldWorks project. It should come up with a

"Choose a List of Anthropology Categories" dialog (which may be partially hidden

by the splash screen). Pick the list you want to load (usually the top one) and click

OK. If it happens to crash at the end of this, just restart the program and it should

work OK.

4.8 Delete orphaned entries

Probably due to a problem with importing incorrectly, one lexical database had thousands

of lexical entries that basically had a lexeme form and nothing else. These entries were

missing senses, but minor entries also typically do not have senses. The following query

lists all of the entries that are missing senses and do not have MainEntriesOrSenses set.

select le.id from LexEntry_ le
left outer join LexEntry_Senses ls on ls.src = le.id
left outer join LexEntry_MainEntriesOrSenses ms on ms.src = le.id
where ls.src is null and ms.src is null
order by DateCreated

This query can be converted into a query that deletes these entries from the database.

Large deletions are typically slow, so this query may take around 20 minutes to delete

several thousand entries.

FieldWorks database model Page 25

6/13/2013

declare @hvo int, @nvchvo nvarchar(20)
declare mycursor cursor local static forward_only read_only for
 select le.id from LexEntry_ le
 left outer join LexEntry_Senses ls on ls.src = le.id
 left outer join LexEntry_MainEntriesOrSenses ms on ms.src = le.id
 where ls.src is null and ms.src is null
open mycursor
fetch next from mycursor into @hvo
while @@fetch_status = 0
begin
 set @nvchvo = @hvo
 exec deleteobjects @nvchvo
 fetch next from mycursor into @hvo
end
close mycursor
deallocate mycursor

4.9 Delete Scripture from a FieldWorks project

This query will delete everything related to Scripture from a FieldWorks project. The

nocount sections eliminate a long series of reporting that is basically useless. This is

especially helpful when running this using the db program as described below.

-- Turn off reporting
declare @fIsNocountOn int
set @fIsNocountOn = @@options & 512
if @fIsNocountOn = 0 set nocount on

declare @hvo int, @nvchvo nvarchar(20)
-- Delete Scripture
select @hvo = dst from LangProject_TranslatedScripture
set @nvchvo = @hvo
exec deleteobjects @nvchvo
-- Delete Scripture UserViews
declare mycursor cursor local static forward_only read_only for
 select id from UserView where App = 'A7D421E1-1DD3-11D5-B720-0010A4B54856'
open mycursor
fetch next from mycursor into @hvo
while @@fetch_status = 0
begin
 set @nvchvo = @hvo
 exec deleteobjects @nvchvo
 fetch next from mycursor into @hvo
end
close mycursor
deallocate mycursor

Restore reporting to original state
if @fIsNocountOn = 0 set nocount off

Note, this query could be placed in a text file (e.g., DeleteScripture.sql) in

your %ALLUSERSPROFILE%\Application Data\SIL\FieldWorks\Data directory

(Note: %ALLUSERSPROFILE%\Application Data is c:\Documents and Settings\All

Users\Application Data on Windows XP and c:\ProgramData on Vista.) and run from a

command line using the db program. This could also be placed in a batch file and

FieldWorks database model Page 26

6/13/2013

connected to a desktop icon for simple execution, if you wanted to do something like this

frequently. The batch file might have:

db delete MyDictProject
db copy MyProject MyDictProject
db exec DeleteScripture.sql MyDictProject

4.10 Delete all items from a possibility list

This query will delete all items in the DomainTypes (Academic Domains) list. This might

be useful if you want to import your own list of local semantic domains, or some other

list you’ve created. By changing the initial select, you could clear out any other list as

well.

declare @hvo int, @nvchvo nvarchar(20)
select @hvo = dst from LexDb_DomainTypes
declare mycursor cursor local static forward_only read_only for
 select id from CmPossibility_ where owner$ = @hvo
open mycursor
fetch next from mycursor into @hvo
while @@fetch_status = 0
begin
 set @nvchvo = @hvo
 exec deleteobjects @nvchvo
 fetch next from mycursor into @hvo
end
close mycursor
deallocate mycursor

4.11 Exploring interlinear text

The following query provides basic information on interlinear texts including Ids for

significant objects in the structure and text for titles, paragraph baselines, and translations

and notes. If your titles are primarily in some writing system other than English, change

the ‘en’ on the second line to the writing system IcuLocale of the desired writing system.

See Conceptual model overview.doc section on Interlinear Text for further details.

declare @titleWs int, @seg int
select @titleWs = id from LgWritingSystem where IcuLocale = 'en'
select @seg = cad.id from CmAnnotationDefn cad
join CmPossibility_Name cpn on cpn.obj = cad.id
where cpn.txt = 'Text Segment'
select tx.id Text, cn.txt Title, sp.src StText, sp.dst Para, sp.ord Pos, par.contents BaseLine,
 cba.id Seg, cba.BeginOffset BegOff, at.src IndAnn, ws.IcuLocale ws, co.txt Trans
from Text tx
left outer join CmMajorObject_Name cn on cn.obj = tx.id and cn.ws = @titleWs
left outer join Text_Contents tc on tc.src = tx.id
left outer join StText_Paragraphs sp on sp.src = tc.dst
join StTxtPara par on par.id = sp.dst
left outer join CmBaseAnnotation_ cba on cba.BeginObject = sp.dst and cba.AnnotationType
= @seg
left outer join CmIndirectAnnotation_AppliesTo at on at.dst = cba.id
left outer join CmAnnotation_Comment co on co.obj = at.src
left outer join LgWritingSystem ws on ws.id = co.ws
order by cn.txt, tx.id, sp.ord, cba.BeginOffset

FieldWorks database model Page 27

6/13/2013

This is a truncated example of the output for Sena 3.

Text Title StText Para Pos BaseLine Seg BegOff IndAnn ws Trans
228 Canoe trip 229 230 1 Wapakila m'm... 17811 0 17812 en "He embarked in a canoe…
228 Canoe trip 229 231 2 Na masiku mb... 49167 0
225 Have courage 226 227 1 Pisapha, mbw... 17719 0 17720 en These things hurt but wh…
225 Have courage 226 227 1 Pisapha, mbw... 17719 0 17720 pt Estas coisas doem mas…
232 In the garden 233 234 1 Babanga ana... 17806 0 17807 en My father has a large…
232 In the garden 233 235 2 Mwenemo mu...
232 In the garden 233 236 3 Muna milara...
232 In the garden 233 237 4 Ikhalipo minga...
232 In the garden 233 238 5 Baba aipisa.
232 In the garden 233 239 6 Mwezi wa kh...
232 In the garden 233 240 7 Mpunga wab...

The following query can be used to give information on the interlinear annotations for an

interlinear text. The title of the interlinear text should be entered on the 3
rd

 line. In

versions after FieldWorks 5.0 a stored function fnGetTextAnnotations will be available to

give this information. This method uses the top analysis language for the glosses and the

top vernacular writing system for the wordforms. (Thanks to Steve Miller for this

example.)

DECLARE @nAnnotationDefnPIC INT, @nAnalysisWS INT, @nVernacularWS INT,
@nvcTextName NVARCHAR(4000)
SELECT @nvcTextName = N'Canoe trip'

SELECT @nAnnotationDefnPIC = Obj
FROM CmPossibility_Name
WHERE Txt = 'Punctuation In Context'

SELECT TOP 1 @nVernacularWS = dst FROM LangProject_CurVernWss
SELECT TOP 1 @nAnalysisWS = dst FROM LangProject_CurAnalysisWss

DECLARE @tblTextAnnotations TABLE (
 TextId INT,
 TextName NVARCHAR(4000),
 Paragraph INT,
 StTxtParaId INT,
 BeginOffset INT,
 EndOffset INT,
 AnnotationId INT,
 WordFormId INT,
 Wordform NVARCHAR(4000),
 AnalysisId INT,
 GlossId INT,
 Gloss NVARCHAR(4000))

IF @nAnalysisWS IS NULL
 SELECT TOP 1 @nAnalysisWS = Dst
 FROM LangProject_CurAnalysisWss ORDER BY Ord
IF @nVernacularWS IS NULL
 SELECT TOP 1 @nVernacularWS = dst
 FROM LangProject_CurVernWss ORDER BY Ord

--== Annotation is not an InstanceOf anything ==--
INSERT INTO @tblTextAnnotations
SELECT
 cmon.Obj AS TextId,

FieldWorks database model Page 28

6/13/2013

 cmon.Txt AS TextName,
 tp.Ord AS Paragraph,
 stp.Id AS StTxtParaId,
 cba.BeginOffset,
 cba.EndOffset,
 cba.Id AS AnnotationId,
 NULL AS WordFormId,
 SUBSTRING(stp.Contents, cba.BeginOffset + 1, cba.EndOffset - cba.BeginOffset)
 COLLATE SQL_Latin1_General_CP1_CI_AS AS WordForm, --(avoids collate
mismatch
 NULL AS AnalysisId,
 NULL AS GlossId,
 NULL AS Gloss
FROM CmMajorObject_Name cmon
JOIN Text_Contents tc ON tc.Src = cmon.Obj
JOIN StText st ON st.Id = tc.Dst
JOIN StText_Paragraphs tp ON tp.Src = st.Id
JOIN StTxtPara stp ON stp.Id = tp.Dst
JOIN CmBaseAnnotation cba ON cba.BeginObject = stp.Id
JOIN CmAnnotation ca ON ca.Id = cba.Id
WHERE ca.InstanceOf IS NULL
 AND cmon.Txt = @nvcTextName
 AND ca.AnnotationType = @nAnnotationDefnPIC
--== Annotation is an InstanceOf Wordform ==--
UNION
SELECT
 cmon.Obj AS TextId,
 cmon.Txt AS TextName,
 tp.Ord AS Paragraph,
 stp.Id AS StTxtParaId,
 cba.BeginOffset,
 cba.EndOffset,
 cba.Id AS AnnotationId,
 wwff.Obj AS WordFormId,
 wwff.Txt AS WordForm,
 NULL AS AnalysisId,
 NULL AS GlossId,
 NULL AS Gloss
FROM CmMajorObject_Name cmon
JOIN Text_Contents tc ON tc.Src = cmon.Obj
JOIN StText st ON st.Id = tc.Dst
JOIN StText_Paragraphs tp ON tp.Src = st.Id
JOIN StTxtPara stp ON stp.Id = tp.Dst
JOIN CmBaseAnnotation cba ON cba.BeginObject = stp.Id
JOIN CmAnnotation ca ON ca.Id = cba.Id
JOIN WfiWordForm_Form wwff ON wwff.Obj = ca.InstanceOf AND wwff.WS =
@nVernacularWS
WHERE cmon.Txt = @nvcTextName
--== Annotation is an InstanceOf Annotation ==--
UNION
SELECT
 cmon.Obj AS TextId,
 cmon.Txt AS TextName,
 tp.Ord AS Paragraph,
 stp.Id AS StTxtParaId,
 cba.BeginOffset,

FieldWorks database model Page 29

6/13/2013

 cba.EndOffset,
 cba.Id AS AnnotationId,
 wwff.Obj AS WordFormId,
 wwff.Txt AS WordForm,
 wa.Id AS AnalysisId,
 NULL AS GlossId,
 NULL AS Gloss
FROM CmMajorObject_Name cmon
JOIN Text_Contents tc ON tc.Src = cmon.Obj
JOIN StText st ON st.Id = tc.Dst
JOIN StText_Paragraphs tp ON tp.Src = st.Id
JOIN StTxtPara stp ON stp.Id = tp.Dst
JOIN CmBaseAnnotation cba ON cba.BeginObject = stp.Id
JOIN CmAnnotation ca ON ca.Id = cba.Id
JOIN WfiAnalysis wa ON wa.Id = ca.InstanceOf
LEFT OUTER JOIN WfiWordForm_Analyses wwfa ON wwfa.Dst = wa.Id
LEFT OUTER JOIN WfiWordForm_Form wwff ON wwff.Obj = wwfa.Src AND wwff.WS =
@nVernacularWS
WHERE cmon.Txt = @nvcTextName
--== Annotation is an InstanceOf Gloss ==--
UNION
SELECT
 cmon.Obj AS TextId,
 cmon.Txt AS TextName,
 tp.Ord AS Paragraph,
 stp.Id AS StTxtParaId,
 cba.BeginOffset,
 cba.EndOffset,
 cba.Id AS AnnotationId,
 wwff.Obj AS WordFormId,
 wwff.Txt AS WordForm,
 wa.Id AS AnalysisId,
 wgf.Obj AS GlossId,
 wgf.Txt AS Gloss
FROM CmMajorObject_Name cmon
JOIN Text_Contents tc ON tc.Src = cmon.Obj
JOIN StText st ON st.Id = tc.Dst
JOIN StText_Paragraphs tp ON tp.Src = st.Id
JOIN StTxtPara stp ON stp.Id = tp.Dst
JOIN CmBaseAnnotation cba ON cba.BeginObject = stp.Id
JOIN CmAnnotation ca ON ca.Id = cba.Id
JOIN WfiGloss_Form wgf ON wgf.Obj = ca.InstanceOf AND wgf.WS = @nAnalysisWS
LEFT OUTER JOIN WfiAnalysis_Meanings wam ON wam.Dst = wgf.Obj
LEFT OUTER JOIN WfiAnalysis wa ON wa.Id = wam.Src
LEFT OUTER JOIN WfiWordForm_Analyses wwfa ON wwfa.Dst = wa.Id
LEFT OUTER JOIN WfiWordForm_Form wwff ON wwff.Obj = wwfa.Src AND wwff.WS =
@nVernacularWS
WHERE cmon.Txt = @nvcTextName
ORDER BY tp.Ord, cba.BeginOffset

SELECT * FROM @tblTextAnnotations

Here’s a truncated sample of the output from Sena 3.

Text TextName Para ParaId BOff EOff AnnId WFId Wordform AnalId GlossId Gloss
228 Canoe trip 1 230 0 8 17769 3037 wapakila 3038 3039 he embarked
228 Canoe trip 1 230 9 17 17759 2962 m'mwadia 2967 2968 in canoe

FieldWorks database model Page 30

6/13/2013

228 Canoe trip 1 230 19 27 17813 3200 mbakwira 3201 3202 go up
228 Canoe trip 1 230 28 30 17760 2973 pa 2974 2975 ASSOC
228 Canoe trip 1 230 31 35 17775 2978 mudi 2979
228 Canoe trip 1 230 39 44 17774 2981 maulo 2982 2983 afternoon
228 Canoe trip 1 230 46 51 17810 3196 dzuwa 3197 3198 sun
228 Canoe trip 1 230 52 61 17761 2990 mbidadoka
228 Canoe trip 1 230 63 71 17762 2991 mbatsama 2992
228 Canoe trip 2 231 0 2 17758 2856 na 2857
228 Canoe trip 2 231 3 9 17814 2997 masiku 2998 2999 evening
228 Canoe trip 2 231 10 18 17763 3002 mbazidza 3003 3004 come
228 Canoe trip 2 231 19 27 17808 3188 nkhalamu 3189 3190 lion
228 Canoe trip 2 231 28 34 17815 3206 ziwiri 3207 3208 two
228 Canoe trip 2 231 36 45 17764 3014 mbazilila 3015
228 Canoe trip 2 231 47 54 17765 3018 mbagopa 3019 3020 afraid
228 Canoe trip 2 231 56 65 17766 3024 mbapakila 3025
228 Canoe trip 2 231 66 72 17809 3192 pontho 3193 3194 again
228 Canoe trip 2 231 73 81 17767 2962 m'mwadia 2963
228 Canoe trip 2 231 83 93 17768 3029 mbawambuka 3030 3031 cross

4.12 Baseline and Translations from interlinear text

The following query can be used to gather information about your interlinear text. This

lists the interlinear text id and title, the StText id, along with each Paragraph id, position,

and baseline text, then the segment ids within each paragraph, and the type and

translation/note for each segment.

declare @titleWs int, @segDef int, @analWs int
select @titleWs = id from LgWritingSystem where IcuLocale = 'en'
select @segDef = id from CmObject where Guid$ = 'B63F0702-32F7-4ABB-B005-
C1D2265636AD'
select top 1 @analWs = dst from LangProject_CurAnalysisWss order by ord
select tx.id Text, cn.txt Title, sp.src StText, sp.dst Para, sp.ord Pos, par.contents BaseLine,
 seg.id Seg, abb.txt Type, com.txt Trans
from Text tx
left outer join CmMajorObject_Name cn on cn.obj = tx.id and cn.ws = @titleWs
left outer join Text_Contents tc on tc.src = tx.id
left outer join StText_Paragraphs sp on sp.src = tc.dst
join StTxtPara par on par.id = sp.dst
left outer join CmBaseAnnotation_ seg on seg.BeginObject = par.id and seg.AnnotationType =
@segDef
left outer join CmIndirectAnnotation_AppliesTo apto on apto.dst = seg.id
left outer join CmAnnotation ann on ann.id = apto.src
left outer join CmPossibility_Abbreviation abb on abb.obj = ann.AnnotationType and abb.ws =
@analWs
left outer join CmAnnotation_Comment com on com.obj = ann.id and com.ws = @analWs
order by cn.txt, tx.id, sp.ord, seg.BeginOffset

Here’s a truncated sample of the output from Sena 3 (with the first analysis writing

system set to English).

Text Title StText Para Pos BaseLine Seg Type Trans
246 Canoe trip 247 248 1 Wapakila m'mwadia… 23032 FT He embarked in a canoe...
246 Canoe trip 247 249 2 Na masiku mbazidza… 23055 FT At night two lions came and…
243 Have courage 244 245 1 Pisapha, mbwenye… 22965 FT These things hurt but what...
243 Have courage 244 245 1 Pisapha, mbwenye... 23057 FT For all of us will die.
250 In the Garden 251 252 1 Babanga ana munda… 23027 FT My father has a large garden.
250 In the Garden 251 253 2 Mwenemo muna miti... 23043 FT There he has many trees.
250 In the Garden 251 254 3 Muna milaranja, mifigu... 23045 FT He has orange trees, banana...
250 In the Garden 251 255 4 Ikhalipo minga m'munda. 23047 FT There were thorns in the garden.
250 In the Garden 251 256 5 Baba aipisa. 23049 FT Father burned them.
250 In the Garden 251 257 6 Mwezi wa khumi na... 23051 FT In November he planted a lot...
250 In the Garden 251 258 7 Mpunga wabuluka... 23053 FT The rice produced well.

FieldWorks database model Page 31

6/13/2013

4.13 Splitting an interlinear text

Suppose you have an interlinear text and want to move some of the paragraphs to another

text, or into a new text. There is no way to do this in the current program. You can cut

some paragraphs from the baseline text and past them into a new text, but in the process

all the interlinearization, free translations, and notes get lost. However, moving

paragraphs is fairly easy to do via SQL. The object is to move the desired StTxtPara

elements to another StText, making sure the id of the StTxtPara is not changed. The

interlinearization, free translations, and notes will then move with the paragraph since

they are references to the paragraph.

The following query can be used to gather information about your interlinear text. If you

include the ‘where’ clause to limit the output based on the baseline text, and the baseline

text contains an apostrophe, it must be quoted with a leading apostrophe. The % at the

beginning and end of the string is a wildcard meaning anything can go before or after the

string.

declare @titleWs int
select @titleWs = id from LgWritingSystem where IcuLocale = 'en'
select tx.id Text, cn.txt Title, sp.src StText, sp.dst Para, sp.ord Pos, par.contents BaseLine
from Text tx
left outer join CmMajorObject_Name cn on cn.obj = tx.id and cn.ws = @titleWs
left outer join Text_Contents tc on tc.src = tx.id
left outer join StText_Paragraphs sp on sp.src = tc.dst
join StTxtPara par on par.id = sp.dst
--where par.contents like N'%Wapakila m''mwadia%'
order by cn.txt, tx.id, sp.ord

Here’s a sample of the output for Sena 3 after creating a new interlinear text.

Text Title StText Para Pos BaseLine
228 Canoe trip 229 230 1 Wapakila m'mwadia, mbakwira pa mudi na…
228 Canoe trip 229 231 2 Na masiku mbazidza nkhalamu ziwiri…
225 Have courage 226 227 1 Pisapha, mbwenye pinafunika n'khuphata …
232 In the garden 233 234 1 Babanga ana munda ukulu.
232 In the garden 233 235 2 Mwenemo muna miti mizinji.
232 In the garden 233 236 3 Muna milaranja, mifigu, mindimu na mimanga.
232 In the garden 233 237 4 Ikhalipo minga m'munda.
232 In the garden 233 238 5 Baba aipisa.
232 In the garden 233 239 6 Mwezi wa khumi na ubodzi abzwala maningi…
232 In the garden 233 240 7 Mpunga wabuluka maningi.
49168 New Text 49169 49170 1

Suppose the goal is to move the first paragraph from the ‘Canoe trip’ to the end of ‘New

Text’. In this case we want to move the 230 paragraph from the 229 StText to the 49169

StText following the 49170 paragraph. The MoveOwnedObject$ stored procedure for

moving owned objects in a vector is the best way to accomplish this move. It can move

one or more paragraphs. Here’s a summary of the parameters to MoveOwnedObject$:

 @SrcObjId int, – The ID of the object that owns the source object(s)

 @SrcFlid int, – The FLID (field ID) of the object attribute that owns the object(s)

 @ListStmp int, – The timestamp value of the object(s) to be moved. Unused.

 @StartObj int = null, – The ID of the first object to be moved

 @EndObj int = null, – The ID of the last object to be moved

FieldWorks database model Page 32

6/13/2013

 @DstObjId int, – The ID of the object which will own the object(s) moved

 @DstFlid int, – The FLID (field ID) of the object attribute that will own the object(s)

 @DstStartObj int = null – the ID of the object before which the object(s) will

 be moved. If null, the objects will be appended

The FLID for StText_Paragraphs is 14001. Thus the following query will move the single

paragraph to the end of the destination StText.

exec MoveOwnedObject$ 229, 14001, null, 230, 230, 49169, 14001, null

After executing this query, the results from the first query verify that the paragraph

moved as desired. If you open the database in Flex, you’d see that the interlinearization

and free translations moved with the paragraph.

Text Title StText Para Pos BaseLine
228 Canoe trip 229 231 2 Na masiku mbazidza nkhalamu ziwiri…
225 Have courage 226 227 1 Pisapha, mbwenye pinafunika n'khuphata...
232 In the garden 233 234 1 Babanga ana munda ukulu.
232 In the garden 233 235 2 Mwenemo muna miti mizinji.
232 In the garden 233 236 3 Muna milaranja, mifigu, mindimu na mimanga.
232 In the garden 233 237 4 Ikhalipo minga m'munda.
232 In the garden 233 238 5 Baba aipisa.
232 In the garden 233 239 6 Mwezi wa khumi na ubodzi abzwala maningi…
232 In the garden 233 240 7 Mpunga wabuluka maningi.
49168 New Text 49169 49170 1
49168 New Text 49169 230 2 Wapakila m'mwadia, mbakwira pa mudi na…

4.14 Correcting interlinear analyses

One team had hundreds of interlinear analyses made where the morpheme line was set to

the suffix lexeme form ‘se1’. Later they realized a better analysis would be to use the ‘e’

allomorph of the ‘se1’ entry in the environment where the preceding morph ended in r, l,

m, n, s, or S. There were at least three complicating factors that made it impractical to do

this within the Flex UI. First, there were two homographs of ‘se’, but the morph line

showed ‘se’ for both. Only ‘se1’ had the ‘e’ allomorph. Second, there isn’t any way to

filter on the environment, and this suffix was very common. Third, the UI doesn’t

provide a way to change just the morph line for a given analysis. In this case, all the

program needs to do is change the WfiMorphBundle for the appropriate wordform

analyses from pointing to the lexeme form to point to the allomorph instead. The

following query displays information on the analyses that need to be changed.

declare @se1 int, @e int
select top 1 @se1 = mf.obj, @e = mfa.obj from MoForm_Form mf
join LexEntry_LexemeForm cf on cf.dst = mf.obj
join LexEntry le on le.id = cf.src
left outer join LexEntry_AlternateForms af on af.src = le.id
left outer join MoForm_Form mfa on mfa.txt = 'e'
where mf.txt = 'se' and le.HomographNumber = 1
select wf.txt Word, wa.owner$ WordId, mf1.txt Morph1, mb1.id Morph1Id,
 mf2.txt Morph2, mb2.id Morph2Id from WfiMorphBundle_ mb2
join WfiMorphBundle_ mb1 on mb1.owner$ = mb2.owner$
 and mb1.ownord$ = mb2.ownord$ - 1
left outer join MoForm_Form mf1 on mf1.obj = mb1.morph
left outer join MoForm_Form mf2 on mf2.obj = mb2.morph
join WfiAnalysis_MorphBundles mb on mb.dst = mb1.id

FieldWorks database model Page 33

6/13/2013

join WfiAnalysis_ wa on wa.id = mb.src
left outer join WfiWordform_Form wf on wf.obj = wa.owner$
where mb2.morph = @se1 and substring(mf1.txt, len(mf1.txt), 1) in ('r', 'l', 'm', 'n', 's', 'S')

Here’s a partial list of the results from this query showing the suffix as Morph2 and the

preceding root as Morph1 and the full wordform on the left.

Word WordId Morph1 Morph1Id Morph2 Morph2Id
aanane 22994 aanan 22997 se 22998
ahhase 23282 ahhes 23285 se 23286
ahhaye 23287 ahhes 23290 se 23291
ammane 24379 n 24383 se 24384
aNise 25020 aNNis 25023 se 25024
aroose 25735 aros 25738 se 25739
ekTeSmine 30420 Smin 30424 se 30425
hinTiSi 37853 hinTis 37856 se 37857
saatare 70214 saatar 70217 se 70218

The following query will then make the desired switch to use the ‘e’ allomorph in place

of the ‘se’ lexeme form.

declare @se1 int, @e int
select top 1 @se1 = mf.obj, @e = mfa.obj from MoForm_Form mf
join LexEntry_LexemeForm cf on cf.dst = mf.obj
join LexEntry le on le.id = cf.src
left outer join LexEntry_AlternateForms af on af.src = le.id
left outer join MoForm_Form mfa on mfa.txt = 'e'
where mf.txt = 'se' and le.HomographNumber = 1
update WfiMorphBundle set morph = @e
where id in (
 select mb2.id from WfiMorphBundle_ mb2
 join WfiMorphBundle_ mb1 on mb1.owner$ = mb2.owner$
 and mb1.ownord$ = mb2.ownord$ - 1
 left outer join MoForm_Form mf1 on mf1.obj = mb1.morph
 where mb2.morph = @se1 and substring(mf1.txt, len(mf1.txt), 1) in ('r', 'l', 'm', 'n', 's', 'S'))

4.15 Merging Lexical Relations

Flex currently does not provide a convenient way to merge relations from one lexical

relation type to another. As long as they have the same reference set type, this can be

done easily using a SQL query. For example, suppose you had two specific-generic

relations, one with capitalized names and the other with lowercase names. (One way this

can happen is via a LinguaLinks import where names differ.)

You can tell if a lexical relation is being used by going to the Lexical Relations view in

the Lists area. Click on the relation and then click the X deletion button in the toolbar. In

the box that comes up, if there are any senses or entries using this relation, a paragraph

will come up saying how many items are linked to this relation.

Another way to tell is using a SQL query to investigate a given relation. In this example

we will look for links to a relation with generic as the reverse name and generic as a

referse name. We’ll transfer items from the generic relation to the Generic relation. The

following two queries will show the LexReference items that will be moved.

-- Show relations in source
select lrm.src, lrm.dst from LexRefType lrt

FieldWorks database model Page 34

6/13/2013

 left outer join LexRefType_ReverseName lrn on lrn.obj = lrt.id
 join LexRefType_Members lrm on lrm.src = lrt.id
 where lrn.txt = 'generic' -- source Reverse Name

-- Show relations in destination
select lrm.src, lrm.dst from LexRefType lrt
 left outer join LexRefType_ReverseName lrn on lrn.obj = lrt.id
 join LexRefType_Members lrm on lrm.src = lrt.id
 where lrn.txt = 'Generic' -- destination Reverse Name

The following query will move the LexReferences from the source LexRefType to the

destination LexRefType.

-- Merge lexical relations from 'generic' to 'Generic'
declare @srcRefType int, @dstRefType int
select @srcRefType=lrt.id from LexRefType lrt
 left outer join LexRefType_ReverseName lrn on lrn.obj = lrt.id
 where lrn.txt = 'generic' -- source Reverse Name
select @dstRefType=lrt.id from LexRefType lrt
 left outer join LexRefType_ReverseName lrn on lrn.obj = lrt.id
 where lrn.txt = 'Generic' -- destination Reverse Name
select * from LexRefType_Members where src = @srcRefType -- show source relations
select * from LexRefType_Members where src = @dstRefType -- show destination relations
update LexRefType_Members set src = @dstRefType where src = @srcRefType

