
6/20/2014 1

ICU and writing systems
Ken Zook

June 20, 2014

Contents
1 ICU introduction .. 1

2 ICU files .. 2
2.1 unidata .. 3
2.2 locales ... 3
2.3 coll .. 4

3 Languages and dialects .. 4

4 Writing systems in FieldWorks ... 5

5 InstallLanguage ... 8
6 Writing systems during FieldWorks installation ... 9

7 Custom Character setup ... 9

7.1 You have a font that supports a character you need, but FieldWorks does not

know about it... 10

7.2 Unicode defines a new character you need, but FieldWorks does not know about

it. 10
7.3 You have a required character that neither Unicode nor NRSI have defined. ... 10

7.4 Unicode or NRSI have defined a character, but there is a problem with their

definition. .. 10

7.5 Defining a Custom Character ... 11
7.6 Removing Custom Characters .. 11

8 Collation setup ... 12

8.1 ICU rules introduction .. 13

9 Keyboard setup .. 16
10 Setting up a complex language project .. 16
11 Moving a writing system to another computer .. 17

12 Changing the underlying writing system code ... 18

1 ICU introduction
International Components for Unicode (ICU) is an open source standard for working with

Unicode that is being developed by IBM and other key players in the Unicode

Consortium. Go to http://www.icu-project.org/ for documentation and downloads. It is cross-

platform, so services are available for Windows, Mac, and Linux, and there are

implementations for C, C++, and Java. ICU provides the following services:

 Access to Unicode character properties

 Many functions to deal with Unicode strings, including surrogates

 Converters to transform data to and from standard code pages

 Locale resources based on a language, region, and variant—includes collation

customization, date, time, number, and currency display patterns, translations for

languages and countries, and lists of exemplar characters

 Transliteration using rule-based or algorithmic processes such as converting Greek to

Latin

http://www.icu-project.org/

ICU and writing systems Page 2

6/20/2014

 Case conversion

 Normalization

 Date and time functions

 Formatting and parsing strings representing things such as numbers, dates, and time

 Searching and sorting capabilities, including regular expressions

 Text analysis for things such as determining line breaks, selecting words, counting

graphemes, and cursor movement

 A text layout engine handles contextual forms, bidirectional text, ligatures, character

reordering, and character positioning, and uses OpenType tables

 Allows user-customized data tables including PUA

FieldWorks uses ICU because it handles many things needed for complex Unicode data,

and saves a lot of programming time. It was especially attractive because it allows users

to create their own writing systems (locales) and allows full use of the PUA and

surrogates through customized tables.

Their assumption is that developers will do this work and then install these on end-user

computers. In FieldWorks, end-users need to be able to define their own locales and PUA

characters. This is possible through the tools they provide, but SIL is probably the only

organization using ICU in this way. The big problem is that ICU memory-maps various

Unicode and locale resources from the disk during operation to make it more efficient.

This works fine during normal operations, but whenever users modify a writing system,

FieldWorks needs to update some of the ICU tables. As long as the tables are memory-

mapped, the operating system will not allow them to be modified. To allow users to

modify a writing system, FieldWorks needs to first release all ICU resources. With

careful programming, it is possible to do this in the active program, but not if other

programs have the ICU files locked.

ICU developers continue to add improvements and support for new code points as the

Unicode Consortium approves new Unicode versions. FieldWorks 4.0 uses ICU 3.4,

which implements Unicode 4.1. FieldWorks 4.2 through 5.4 uses ICU 3.6, which

implements Unicode 5.0. FieldWorks 6.0 uses ICU 4.0, which implements Unicode 5.1.

Typically, ICU developers deliver a large icudt36.dll that contains all the compiled ICU

data. Instead of this approach, FieldWorks includes the compiled data files in separate

folders, making icudt36.dll a stub that looks for the compiled data in the separate folders.

FieldWorks uses this approach because it works best when users need to modify ICU

files for their writing systems.

2 ICU files
The ICU files are installed as part of the SIL Encoding Converter package that is built

into the FieldWorks installer. It is also available separately from the NRSI Web site. The

ICU data files are installed in c:\Program Files\Common Files\SIL\Icu36. This directory has 3

subdirectories:

 The data directory contains source files for building the ICU data files.

 The icudt36l directory has compiled runtime versions of the ICU data.

 The tools directory holds a set of ICU programs needed in various stages of

compiling the ICU data files from the data source files.

ICU and writing systems Page 3

6/20/2014

The Unicode database and locales are the central part of the ICU library. String functions

need to know the locale in order to search, sort, and format dates and times. In

FieldWorks, a writing system corresponds to an ICU locale, so as the program creates

and modifies writing systems it also creates and modifies ICU locales. FieldWorks will

not modify ICU-provided locale files, but allows users to create new locales and modify

them. As FieldWorks defines and modifies PUA characters, it modifies the Unicode

database files. Any changes to these files get compiled into runtime versions in the

icudt36l directory. During operation, files in this directory are memory-mapped, causing

them to be locked by the operating system until the ICU resources are released.

The three source directories under the data directory that are modified by FieldWorks are

the unidata, locales, and coll directories.

2.1 unidata

The primary file in the unidata directory is UnicodeData.txt. This contains all the Unicode

properties for code points other than some of the large East Asian sections. These

definitions are common across all locales. When FieldWorks defines properties for PUA

characters, it adds these definitions to this file. The files installed by SIL Encoding

Converters have the SIL Corporate PUA characters already defined in this file. They are

flagged with an “[SIL-Corp] Added Sep 2005” comment. If you add PUA characters,

they are flagged with [SIL-Corp], followed by the language definition file and date and

time they were added.

The Hebrew section of UnicodeData.txt was designed for modern day Hebrew. Using

standard normalization on Biblical Hebrew results in incorrect reordering of diacritics. To

solve this problem, FieldWorks sets the canonical combining classes for Hebrew

characters to custom values described in SBLHebrewUserManual1.5x.pdf available at

http://www.sbl-site.org/educational/BiblicalFonts_SBLHebrew.aspx. This makes

FieldWorks compatible with BART and other sources working in conjunction with the

Society of Biblical Literature and SIL International. Some code points between 599-5C7

are affected. These values have been tested by normalizing the entire Hebrew OT text

from BART and verifying that it didn't change the input. There were 2 words that had

reordered code points (dt29:28 and pr15:31), but upon further investigation, these were

due to errors in the original Hebrew text. As a result of these changes, FieldWorks should

work with ancient or modern Hebrew text without any improper reordering.

Various other files in the unidata directory are based on UnicodeData.txt, but reordered in

ways to make data retrieval more efficient. These files may also be modified as PUA

characters are added.

When these files are compiled, they modify runtime files such as uprops.icu, ubidi.icu,

ucase.icu, unames.icu, and unorm.icu in the icudt36l directory.

2.2 locales

Each locale has a separate file in the locales directory. The filename represents the locale

and has a .txt extension. ICU factory locales contain a lot of information, including

 local names for languages, countries (regions), and variants

 information for formatting dates, time, and currencies

 the Windows keyboard used with that locale

http://www.sbl-site.org/educational/BiblicalFonts_SBLHebrew.aspx

ICU and writing systems Page 4

6/20/2014

 exemplar characters, and

 other information.

When a writing system is created in FieldWorks, it creates a file in the locales directory

with the ICULocale as the filename with a .txt extension. By default, this file does not

have much in it unless users select a similar writing system in the writing system wizard

or Writing System Properties page. In that case, it copies information from the similar

writing system (ICU locale) into the new locale.

When a locale is modified, FieldWorks also adds information to root.txt, keeping track of

added languages, regions, or variants. This information is at the top of the file in a

Custom resource bundle. It keeps track of the language definition file, date, and time of

modification. It also modifies res_index.txt which keeps a list of installed locales. It adds

flag lines with [SIL-Corp] along with the language definition file, date, and time.

(FieldWorks 5.0 through 5.4 has a bug that omits this.)

When these files are compiled, they modify runtime files xyz.res (xyz represents the

ICULocale code), root.res, and res_index.res in the icudt36l directory.

2.3 coll

Unicode (and ICU) provide a default collation for all Unicode code points, but these can

be modified or tailored for given locales. Each locale typically has a .txt file in the “coll”

directory that defines collation tailoring for that locale.

When a locale specifying a collation is modified, FieldWorks updates a file for that locale

in the “coll" directory. If users specify a similar writing system in the writing system

wizard or Writing System Properties page, tailoring for the similar writing system (ICU

locale) is copied into the collation tab in the writing system dialog. Users can modify the

collation information as desired. This information is then copied into the collation file for

that writing system in the “coll” directory.

FieldWorks also updates res_index.txt, a list of all collations defined in ICU.

Modifications made to this later file are flagged with [SIL-Corp], along with the language

definition file, date, and time. (FieldWorks 5.0 through 5.4 has a bug that omits this.)

When these files are compiled, they modify runtime files xyz.res (xyz represents the

ICULocale code) and res_index.res in the icudt36l\coll directory.

3 Languages and dialects
FieldWorks maintains a distinction between vernacular and analysis writing systems.

Any writing system for the language in which you are working is considered a vernacular

writing system. There may be multiple writing systems for this language such as a

standard orthography, IPA (phonetic), Pinyin form, phonemic, and Romanized.

Any language used for glosses, definitions, notes, and translations of examples use

analysis writing systems. These languages may also have additional writing systems such

as Pinyin and Romanized forms.

FieldWorks has some support for dialects, but it is probably not adequate. Your

suggestions in this area would be helpful. There is usually a continuum between dialects

and languages which determine to what extent they are separated in FieldWorks. Here are

current options for treating dialects.

ICU and writing systems Page 5

6/20/2014

 The dialect is included in the same writing system as vernacular. This approach can

be used when the dialect is almost identical to the vernacular language. Interlinear

text would be interspersed with this dialect, so the wordform inventory and lexical

headwords would contain these words. Where dialect headwords are different from

vernacular, they would be entered as dialectal variants, with the condition or

restrictions field indicating the dialect. Where senses for a dialect are different, they

could be flagged in the restrictions or source fields.

 The dialect is a different vernacular writing system in the same FieldWorks project. If

there are quite a few dialectal variants where the meanings are identical to the

vernacular, you could keep track of these in alternate vernacular writing systems. In

this case they would have the same language identifier, but the region would be set to

indicate the dialect. This would allow you to record alternate spellings for a dialect.

There are potential problems with interlinearizing text in this situation if baseline

texts have more than one dialect. Currently, Flex would put all of these dialectal

words in the wordform inventory as vernacular words, which would not be desirable.

We expect to improve the processing of interlinear text to allow the baseline text to

be in a different writing system. It would probably work better at that point, but may

still be lacking.

 The dialect is an analysis writing system in the same language project. This does not

present any problem with headwords, interlinear text, or the wordform inventory. You

may want to use a reversal index for the dialect. This approach basically treats the

dialect as a different language.

 The dialect is the vernacular writing system in a separate FieldWorks project. If the

dialect is quite different and you want to have a separate lexicon and interlinear text

for the dialect, it would be best to treat the dialect as a separate language and have a

separate FieldWorks project for that language. Although we currently do not support

references to other projects, we expect this will be a need as we start using automatic

adaptation programs in FieldWorks.

4 Writing systems in FieldWorks
Information about the conceptual model for writing systems is in the FieldWorks

conceptual model section. In most cases when you make a change to a writing system,

you want that change to propagate to other language projects which use that writing

system. If you created a writing system for one language project and want to use that

same writing system in another project, you can do so without redefining everything for

that writing system.

Every writing system used on your computer has a corresponding Language Definition

File. This file stores information from LgWritingSystem, LgCollation, and other data,

including the ICU locale it is based on (similar writing system) and PUA characters

needed for this writing system. These files are stored in

the %ALLUSERSPROFILE%\Application Data\SIL\FieldWorks\Languages directory. The name

of each file is the ICULocale code for the writing system with an .xml extension.

Note: %ALLUSERSPROFILE%\Application Data is c:\Documents and Settings\All

Users\Application Data on Windows XP and c:\ProgramData on Vista.

ICU and writing systems Page 6

6/20/2014

In order for ICU to use these writing systems, some information needs to be transferred

from the language definition file to the ICU source data files, and then they need to be

compiled. The FieldWorks InstallLanguage program updates ICU source files based on

the language definition file, and then compiles the changes into the ICU runtime files.

This diagram illustrates the process flow for a single writing system in English.

When users create a new writing system and close the Writing System Wizard dialog,

FieldWorks

1. creates and updates the language definition file

2. updates the LgWritingSystem in the current language project, setting LastModified to

the modified time of the language definition file, and

3. executes InstallLanguage to create the new ICU locale files and compiles these into

runtime files.

Tip: InstallLanguage will only update ICU files if the locale is not a factory locale.

If users modify an existing writing system, it follows the same process except it modifies

existing files instead of creating new ones.

When FieldWorks needs to use a writing system that is already defined in the database, it

checks first to see if a language definition file exists for this writing system and does the

following:

 If the language definition file exists and the date is identical to LastModified in the

database, it does not update anything.

 If the language definition file exists with a different date than LastModified in the

database, it updates the database information from the language definition file and

sets LastModified to the date of the language definition file but does not change the

date of the language definition file.

 If the language definition file does not exist, it creates it from the database

information and uses InstallLanguage to install it into ICU.

Note: This does not include PUA characters or similar writing system since these are

not stored in the database.

Using this process, the language definition file contains the master information for the

writing system. Any database on the local computer aligns itself to what is in this file the

next time it is opened. InstallLanguage is only called when you create or update a

language definition file. Thus, FieldWorks assumes that if a language definition file is

present, it is already installed in ICU.

ICU and writing systems Page 7

6/20/2014

This process of keeping ICU files and databases in sync via the language XML file works

well for single users on one computer. However it does cause confusion in some

situations.

 In a lab situation where multiple users work on different projects on the same

computer, suppose user A sets a writing system in some special way for his purpose.

When user B opens his database that uses the same writing system, user A’s

customizations will be loaded into B’s database, which is usually not desirable.

 When a user makes a change to his writing system and backs up his database and

restores it on another computer that already has a definition for that writing system,

the dates will usually differ, so the restored database will take on the definition from

the language definition file on the target machine, thus losing the change made on the

source machine.

 When a user accesses a database across the network, FieldWorks checks the dates

stored in the remote database against the language definition file on the local machine.

If they are different, the database is updated from the local machine.

 When a user installs an updated version of FieldWorks, the language definition files

are not removed. Thus if the new version of FieldWorks has made some change to a

particular writing system, that change may be lost on the user’s machine since the

dates will be different and the user’s information will override what was in the

installed database.

To overcome these problems, you should make sure each machine that runs FieldWorks

has the same copy of the language definition file, and that it is properly installed on each

machine. To do this for the xyz writing system

1. Copy xyz.xml to the %ALLUSERSPROFILE%\Application Data\SIL\FieldWorks\Languages

directory.

2. In a command window (Start…run, type cmd then press Enter) execute the following

InstallLanguage xyz

This step updates the ICU files to match the language definition file.

A major problem with this process happens when InstallLanguage tries to update locked

ICU files. In this case, InstallLanguage displays a message like this and waits for the

operator:

If some other application is open, close it to release the ICU lock, then click Retry to

successfully update the ICU files. Having multiple Flex windows open should not cause

this problem since they are all part of the same application. Having a TE window open

while modifying a writing system in Flex will normally give this problem. Some other

programs such as the SIL Encoding Converter Clipboard Converter may also lock the

ICU files. Non-SIL programs never use our ICU version, so they will not cause this

problem.

ICU and writing systems Page 8

6/20/2014

A single FieldWorks application such as Flex is supposed to release all locks on ICU

before calling InstallLanguage. Unfortunately, some elusive bugs remain where these

locks are not released, so InstallLanguage gives this error even though no other

application is open. When this happens, you can only click Cancel, which means the ICU

files are not updated.

To update the ICU files:

1. Exit the current application, and start it again.

2. Make a change to the writing system.

3. Close the writing system dialog to force the ICU update.

Note: This usually solves the problem. If you ever get into a state where you can’t get

around this message even when restarting the program, stop all FieldWorks programs,

then use InstallLanguage manually to install the writing system (see next section). If that

happens to fail, try rebooting. Windows occasionally gets files in locked states where

only a reboot will clear the lock.

5 InstallLanguage
c:\Program Files\SIL\FieldWorks\InstallLanguage.exe is a separate program you can run from

a command line when desired. If you simply type InstallLanguage from the command

line, it lists the options. It uses registry settings to find the language definition files, so it

can be run from any directory. When you specify a language definition file, the .xml file

extension is optional.

The following is the typical way to install a language definition file (xyz.xml) into ICU:

 InstallLanguage -i -c xyz

This installs the locale (-i) and any PUA characters (-c).

The following command lists custom locales currently installed in ICU:

 InstallLanguage -s

The -customLanguages flag appears to be broken.

You can remove a locale and delete the language definition file with the following

command:

 InstallLanguage -r xyz

Note: If the database still has the “xyz” writing system defined in LgWritingSystem, the

next time you open that database, it recreates the language definition file and reinstalls it

into ICU. To completely get rid of a writing system, you need to delete it from all

databases that use it. The only safe way to do this is in the FieldWorks XML dump file.

See the section on “Removing a writing system” in FieldWorks XML model.doc. If you

remove the writing system from each database and then use InstallLanguage to remove

the language definition and ICU information, you should be rid of the old writing system.

Of course, if you restore a backup that still has the writing system, it comes back again.

If your ICU files ever get corrupted, rename the Icu36 and languages directories, then run

the installer in repair mode to install a fresh copy.

Whenever InstallLanguage modifies an ICU factory file, it makes a copy of the original

file appending _ORIGINAL to the file name. The command

 InstallLanguage -o

ICU and writing systems Page 9

6/20/2014

attempts to restore ICU to its original condition, then reinstalls all of the language

definition files in your Languages directory.

InstallLanguage has a logging capability that, when turned on, writes information to a log

file whenever it executes a command. This is particularly helpful if you get

InstallLanguage failures you do not understand. The log file usually shows what is going

wrong, whether you execute the program from the command line or it is called from

within Fieldworks. Two registry values need to be enabled to get logging to work. The

FieldWorks installer installs these values, but keeps the logging disabled. The registry

key is

 HKEY_LOCAL_MACHINE\SOFTWARE\SIL\FieldWorks

The InstallLanguageLog string value lists the path and name for the log file.

The InstallLanguageUseLog string value controls logging to this file. When set to Y (yes),

normal logging information is written to the log. When set to V (verbose), more

information is written to the log. When set to N (no), logging is disabled.

One error you may encounter when upgrading older FieldWorks databases is an error

related to locale names. If ICU recognizes a 3-letter locale code that has an equivalent 2-

letter code (e.g., English = eng = en), it automatically switches to using the 2-letter code.

InstallLanguage attempts to catch this and warns users to use the 2-letter code instead. A

similar problem can happen if you try to use a 3-letter country (region) code. For example,

Kenya uses KEN as the 3-letter code and KE as the 2-letter code. If you enter KEN, ICU

“helpfully” changes it to KE.

6 Writing systems during FieldWorks installation
Uninstalling FieldWorks does not alter your FieldWorks database files or the language

definition files in the Languages directory.

When you install FieldWorks, it empties the ICU directory to clear any problems that

may be there, then copies a clean installation of ICU files. It then sets a DWORD InitIcu

registry flag to 1 in

 HKEY_LOCAL_MACHINE\SOFTWARE\SIL

Whenever you start a FieldWorks application, it checks this flag. If set to 1, it calls

InstallLanguage with the -o flag to reinstall all of the language definition files into the

new copy of ICU.

If you have a lot of extra language definition files you no longer want, delete them after

uninstalling FieldWorks. When you install a clean version they are not installed again

(assuming you do not open any FieldWorks projects that still have those writing systems

in the database).

7 Custom Character setup
Note: This section is written for FieldWorks 6.0.1 or later. Earlier versions supported the

Private Use Area (PUA), but did not support other areas. For information on Unicode

code points and the PUA area, see Unicode Introduction.doc and Unicode Introduction.ppt.

In the Characters tab of the Writing System Properties dialog the user can define custom

characters needed for a particular writing system. In most cases you will not need to

define any custom characters because Unicode or the SIL Non Roman Script Initiative

ICU and writing systems Page 10

6/20/2014

(NRSI) have defined the vast majority of characters needed for languages around the

world.

There are a few situations, though, where it is necessary to define or modify Unicode

characters for a given writing system. The following sections describe these.

7.1 You have a font that supports a character you need, but
FieldWorks does not know about it.

The font may be a recent font from NRSI or some other source. The new character is in

the PUA area, or it is in an area recently adopted by Unicode, but standard ICU tables

used by FieldWorks do not yet contain a definition for this code point. The Custom

Characters section of the Characters tab of the Writing System Properties dialog can be

used to resolve this issue. For each undefined code point, use the dialog to add a

definition for that code point using the instructions in section 7.5.

7.2 Unicode defines a new character you need, but FieldWorks
does not know about it.

If you have a font that supports these new characters, you can see section 7.1 for

instructions. If you don’t have a font, you will need to obtain a font before it can be used

in FieldWorks.

7.3 You have a required character that neither Unicode nor
NRSI have defined.

You may have a character that is unique to your language that hasn’t been approved by

Unicode, and NRSI has not provided this character in their area of the PUA. If possible,

you should correspond with NRSI about this need before proceeding. For one thing, you

will need to have a font made to support this character. NRSI may be able to help with

this and can advise on what you should do. It may be necessary for you to add this

character to the SIL entity-assigned area of the PUA. Once you have a font that supports

your characters, see section 7.1 for instructions.

7.4 Unicode or NRSI have defined a character, but there is a
problem with their definition.

The code point definitions in Unicode is a standard that has been adopted around the

world. Any time you override these definitions, you will likely get in trouble later on if

your data is used anywhere outside of FieldWorks. As such, this need should be

extremely rare, and you should seek directions from NRSI before proceeding. (One

example of this is that FieldWorks installations have overridden a few Hebrew

normalizations because this is a standard supported by several major organizations

supporting Biblical Hebrew, and the Unicode standard is based on modern Hebrew.)

After appropriate consultation, if you do need to change an existing definition, the

Custom Characters section of the Characters tab of the Writing System Properties dialog

can be used to override an existing Unicode definition or NRSI PUA definition.

ICU and writing systems Page 11

6/20/2014

7.5 Defining a Custom Character

To define a custom character for a writing system or override an existing definition:

1. Go to the Writing Systems tab of the FieldWorks Project Properties dialog (In

FieldWorks Language Explorer, you can use Format…Setup Writing Systems.)

2. Select the writing system from the vernacular or analysis section and click Modify.

3. In the Writing System Properties dialog, click the Characters tab, then click the Add

button.

4. In the Add Custom Character dialog, enter the hex Unicode value in the Code value

box.

Tip: Valid ranges for SIL entity PUA definitions are E000-EFFF, F0000-FFFFD, and

100000-10FFFD. Values under 1000 need to have leading zeros to fill out 4 digits.

5. Type a name for the character, then fill in the desired properties.

6. Close the Add Custom Character dialog with OK.

7. If you need to add these custom characters to your valid characters, you may need to

close the Writing System Properties dialog and reopen it before clicking the Valid

Characters button.

Normally your font designer gives details for each code point property. For more

information, go to www.unicode.org/ucd.

Tip: One way to find appropriate code point properties is to look at similar code points in

the Add Custom Character dialog. You can type any existing code point in the Code

value, and the dialog will fill in the values for that code point. You can type in other

values to investigate, then Cancel the dialog without making any changes.

In the Writing System Properties dialog, the Custom Character window lists all the

custom characters defined from any of your language definition files. It checks the ones

defined in the current writing system. You can check or uncheck boxes to add or remove

the definitions from your language definition file. A custom character definition affects

all writing systems on your computer. The only reason to keep track of specific custom

definitions in a writing system file is to copy that file to a new computer and install the

custom characters on that computer.

Note: Although the Add Custom Character dialog lets you override any Unicode code

point, some alternations will be ignored. For example, the ‘Bidirectional character type’

property allows you to set a character to be Left to Right. However, there are ranges of

Unicode code points that have been reserved for Right to Left characters (e.g., 0800-

08FF). If you attempt to change this property in a code point in one of these ranges, ICU

will ignore your request and will return the value to Right to Left. However, as long as

you are using the override feature to allow FieldWorks to process newly assigned

Unicode code points, this will never be a problem since the Unicode Consortium will

abide by the ranges they have reserved for special uses.

7.6 Removing Custom Characters

If you have predefined a code point that is subsequently defined by Unicode or NRSI in a

more recent version of FieldWorks, you should eliminate your definition and resort to the

installed definition. You can use this same approach to delete a custom definition you no

longer want. At this point, the easiest way to do this is

1. Uninstall FieldWorks

ICU and writing systems Page 12

6/20/2014

2. Review the language definition files in your FieldWorks\Languages directory. For

each one that contains a CharDef element that defines the code point you want to

remove, delete that element from the file.

3. Install FieldWorks. The custom definitions should now be gone.

If you need to do this frequently, or help multiple people, there is another way. Instead of

uninstalling and reinstalling FieldWorks, make a copy of the C:\Documents and

Settings\All Users\Application Data\SIL\FieldWorks\Icu40\data and icudt40l directories

from a new installation and restore these originals to your machine, then clean up the

language definition files (step 2 above), and then execute

 InstallLanguage -o

Here is another way you can get or custom character definitions, if you want.

1. In all *.xml files in C:\Documents and Settings\All Users\Application

Data\SIL\FieldWorks\Languages delete the CharDef element(s) you want to remove.

2. In C:\Documents and Settings\All Users\Application

Data\SIL\FieldWorks\Icu40\data\unidata, rename any file with _ORIGINAL to the

name without _ORIGINAL, replacing the existing file with that name.

3. In a cmd window, type the following command:

 InstallLanguage -o

Note that custom definitions are only stored in the language definition file. They are not

stored in the database. If you transfer your database to a new computer, you should also

copy your language definition file(s) to that computer as well for the custom definitions

to work. If this is not done before installing FieldWorks, you should install the writing

system on the new machine using

 InstallLanguage xx

where xx is the name of your language definition file without the .xml extension.

8 Collation setup
FieldWorks uses ICU collation (based on the Unicode Collation Algorithm) for sorting

data (see http://www.unicode.org/unicode/reports/tr10/). FieldWorks provides one sort

specification for each writing system that users can access in the Writing Systems

Properties…Sorting tab. When this is empty, the writing system uses the default Unicode

collation. The window in the Sorting tab contains rules that override the default Unicode

collation. Using the ICU/Unicode approach, rather than giving a list of characters to

determine collation, users normally give a set of rules to change specific code points that

do not sort correctly by default.

In the Writing System Wizard or the Writing System Properties dialog (Sorting tab),

users can load sort specifications from some other writing system. If they select another

writing system, FieldWorks copies the collation rules from that locale into the sorting tab,

allowing use as is, or allowing further customization. When you close the dialog, this

information is written to the writing system language definition file and then

InstallLanguage incorporates this into the ICU files (assuming it is not an ICU factory

locale). If users select a different writing system that already has something in the sorting

window, FieldWorks asks if they want to overwrite the existing collation rules. The

program is not smart enough to merge new rules with existing rules, so users either need

to overwrite what is already there or leave it. Copy what is currently in the window to

http://www.unicode.org/unicode/reports/tr10/

ICU and writing systems Page 13

6/20/2014

ZEdit (UTF-8 mode) or some other Unicode editor first, then let the similar writing

system overwrite it so users can compare the results.

The sorting window uses Unicode data and is displayed using the default font for the

writing system. Prepare the collation rules in Word or ZEdit in UTF-8 mode and then

paste the results into the window. If you have trouble displaying characters, you can use

the ICU \uNNNN syntax for Unicode values.

8.1 ICU rules introduction

The following resources are available:

 See the ICU tailoring rules at http://userguide.icu-project.org/collation/customization.

 ICU provides a useful Web site for testing collation rules at http://demo.icu-

project.org/icu-bin/locexp?_=root&d_=en&x=col. Click the root language link, then near

the bottom under Collation rules, click Demo.

Note: This demo uses the currently released version of ICU which may not apply to

what is currently available in FieldWorks. For example FieldWorks 6.0 and 6.0.1 use

ICU 4.0, but as of this date, ICU has released ICU 4.2 which adds a new \ quoting

character. So although the demo works with \, FieldWorks will not currently accept

this.

 Martin Hosken wrote an excellent tutorial on using ICU collation for users who need

to delve into this area. The pdf file is zipped in sort_trainer.zip. He also provides a

sorting trainer program to work on the exercises or to test needed collations. This

Python package, complete with its own default ICU version is in sort_trn.zip. Unzip

this to a directory (24 MB) and execute sort_trn.exe to get started. Enter the words that

need to be sorted in the top left pane, one per line, and the rules in the lower pane.

Click the Sort button to see the sorted results in the upper right pane. It also provides

a Sort Keys button to show the sort keys that were generated for each word.

Each ICU rule starts with an ampersand followed by an anchor point. The rest of the rule

specifies how characters are collated compared to the anchor point. There is no need to

start a new line for each rule, but it makes it more readable.

Here is a simple example of a rule using a primary level (single left wedge):

&c<k

This rule states that “k” comes immediately after “c” (e.g., cat, kite, dog).

Note: This does not handle uppercase.

Diagraphs can be handled as well:

&n<ng

This rule states that the “ng” diagraph occurs after “n” (e.g., nang, nung, ngang).

Note: This does not handle uppercase.

The Unicode default collation sequence ignores diacritics unless the rest of the word is

identical. In that case, words are sorted based on the diacritic (e.g., bad, bád, bàd, bâd,

båd, bäd, bãd).

Two left wedges are used for secondary level collation which only comes into effect if

the primary levels are identical. The secondary level is typically used for diacritics. You

can change the way diacritics are sorted with the following rule:

&a<<à<<á<<â<<å<<ä<<ã

http://userguide.icu-project.org/collation/customization
http://demo.icu-project.org/icu-bin/locexp?_=root&d_=en&x=col
http://demo.icu-project.org/icu-bin/locexp?_=root&d_=en&x=col

ICU and writing systems Page 14

6/20/2014

This example changes the default collation of diacritics to include grave before acute

(e.g., bad, bàd, bád, bâd, båd, bäd, bãd).

Note: In addition to inserting the actual character in a rule, you can also give the code

point. The following commands are identical:

&a<<à

&\u0061<<\u00e0

Three left wedges are used for tertiary level collation which is typically used for case.

Tertiary level sorting only affects strings that are identical through the secondary level.

&n<ng<<<Ng<<<NG

&c<k<<<K

The first rule moves “ng” (regardless of case) to follow “n” (e.g., nang, Nang, NANG,

nung, ngang, Ngang, NGANG). The second moves “k” (regardless of case) to follow “c”

(e.g., cat, kite, Kite, dog).

To sort “á” at a primary level after all other “a's”, use this rule:

&a<á<<<Á

This sort order gives ade, ãde, apple, Azure, áde, Áde.

If you need to sort a character before another one instead of after, (e.g., āb, Āb, aa, Aa)

you can do it two ways.

&[before 1]a<ā<<<Ā

In this case the right-hand side goes before the A anchor instead of after. The digit 1

indicates this is a primary level.

&9<ā<<<Ā

The other way is to use an anchor point before the desired letter. Since 9 normally sorts

before A, we can use the normal way to specify that ā immediately follows 9, so therefore

it will be before A.

To sort phonetic script in “p pʰ b ɸ β m ʍ w” order, use either of the following identical

rules:

&p<pʰ<b<ɸ<β<m<ʍ<w

&p<\u0070\u02b0<b<\u0278<\u03b2<m<\u028d<w

Note: This approach can be used to turn a Shoebox sort sequence (that does not have case

distinctions) into a rule. Shoebox has a list of characters, one per line in the desired order.

Put an “&” in front of the first character and change each new line into “<”.This rule can

be pasted into the FieldWorks sort tab. Use only UTF-8 characters, not ANSI.

To sort uppercase and lowercase in “c C b B a A” order, use these two rules :

&c<b<<<B

&b<a<<<A

This can also be combined into a single rule:

&c<b<<<B<a<<<A

Note: In an ICU rule, any non-alphanumeric ASCII character is reserved for syntax

characters. If you need to control collation of any of these characters, you must quote

them with a \ (only ICU 4.2 or greater) or enclose them in apostrophes. A single

ICU and writing systems Page 15

6/20/2014

apostrophe can also be represented as two apostrophes. Here are some examples of

alphanumeric and punctuation characters with or without the \u syntax. (See the Note in

the second bullet under section 8.1 regarding the backslash limitation.)

a letter a

\u0061 letter a

3 digit 3

ng digraph ng

'ng' digraph ng (quotes are optional for alphanumeric characters)

\u006e\u0067 digraph ng

\- hyphen [not currently in FW]

'-' hyphen

' ' space

\ space (there is a space following the \) [not currently in FW]

'\u0020' space

\\u0020 space [not currently in FW]

\' apostrophe [not currently in FW]

'' apostrophe

\u0027\u0027 apostrophe

To control the collation of an apostrophe you would thus add two apostrophes (not a

double quote). To sort t' after t, you would use the rule

&t<t''

The following rules would be one way to handle IPA sorting

&d<d ʒ

&e<ɛ<f<ɸ

&i<ɨ

&k<k''

&n<ŋ

&p<p''<r<ɾ

&s<ʃ<ʂ

&t<t''<t s<t s''<t ʃ<t ʃ''<ʈ ʂ<ʈ ʂ''

&z<ʒ<ʐ<ʔ

Suppose you want to ignore an apostrophe after m and n, but you want ng to sort after n,

and ng' to sort after ng. The following rules allow for this.

The = syntax states that the right side is identical to the left side.

&m=m''

&M=M''

&n=n''

&N=N''

&n<ng<<<Ng<<<NG<ng''<<<Ng''<<<NG''

Suppose you want to ignore 02BC;MODIFIER LETTER APOSTROPHE in sorting.

There are two ways you could handle this. The following rule doesn’t totally ignore the

apostrophe, but it treats it in a secondary level so that it is ignored unless words are

identical otherwise. In this case it always comes after other diacritics.

ICU and writing systems Page 16

6/20/2014

&\u030E<<\u02BC

This would result in the following order: ba, bad, bäd, baʼd, bʼad, bade, bat, bät, baʼt, bʼat,
bate.

The second approach is to totally ignore 02BC.

&[last tertiary ignorable] = \u02BC

This would result in the following order ba, baʼd, bad, bʼad, bäd, bade, baʼt, bat, bʼat, bät,
bate. Since ba, baʼd, and bʼad all have identical sort keys, their order is random.

If you need to ignore more than one character, use = to separate the list of characters. The

following rule would ignore an apostrophe, a question mark, a hyphen, a space, and the

ng digraph

&[last tertiary ignorable] = '' = '?' = '-' = ' ' = ng

or [not currently in FW]

&[last tertiary ignorable] = \' = \? = \- = \ = ng

This could also be represented as

&[last tertiary ignorable] = \u0027\u0027 = '\u003f' = '\u002d' = '\u0020' =

\u006e\u0067

If you simply want to ignore all punctuation as well as white space, you can use the

following rule

[alternate shifted]

The ICU default collation of Thaana characters, used by Divehi, treat diacritics as

primary instead of secondary characters, making it impossible in Flex to filter on

baseforms without diacritics. This can be solved, however, by using this collation rule

(unfortunately it looks mixed up because of RTL characters, but if you copy it and paste

it into Flex, it will work):

&[last primary ignorable]<< ަ << ަ << ަ << ަ << ަ << ަ << ަ << ަ << ަ << ަ << ަ

Refer to the references at the beginning of this section for more complex sorting issues.

9 Keyboard setup
See the separate documentation for Keyboard input for details on installing Windows

input languages and Keyman files. Also refer to c:\Program Files\SIL\FieldWorks\Language

Explorer\Training\Technical Notes on Writing Systems.doc about Keyman setup in section 3.

10 Setting up a complex language project
This summarizes the steps for setting up a complex FieldWorks project. When setting up

writing systems, you do not need to have everything worked out ahead of time. You can

always go into the Writing System Properties dialog and change things such as the

keyboard, fonts, and sort specifications.

It works best if you set up the writing system codes correctly from the beginning. See
c:\Program Files\SIL\FieldWorks\Language Explorer\Training\Technical Notes on Writing

Systems.doc for more details. In particular, pay attention to section 2.3 “Multiple Writing

Systems for the same language” (e.g., orthographic, phonetic, phonemic, and Romanized).

ICU and writing systems Page 17

6/20/2014

Getting started

1. Make sure you install any special Unicode font(s) needed for your vernacular and

analysis languages.

Tip: If you do not have any, search for some on the Internet and/or contact NRSI.

The new Reprise program from NRSI may be helpful here, as well.

2. When needed, make sure you set up Windows input languages and Keyman

keyboards needed for all writing systems (see Keyboard input.doc for details).

3. If you need to import legacy data, make sure you have a way to convert it to Unicode

(see SIL Encoding Converters.doc for details).

4. From any FieldWorks program, create a new project with File…New FieldWorks

Project.

5. Enter the project name (usually the language).

6. Select or define the primary vernacular writing system by setting up fonts, keyboards,

converters, PUA characters, and sorting information as needed.

7. Select or define the primary analysis writing system by setting up fonts, keyboards,

converters, PUA characters, and sorting information as needed.

8. In the new project, define any further vernacular or analysis writing systems needed

in the project by setting up fonts, keyboards, converters, PUA characters, and sorting

information as needed.

9. Back up the FieldWorks project.

Importing files

1. If you need to import lexical data, use Language Explorer. Carefully check the results

to make sure the data imported correctly. If not, restore the backup and try again.

 For SFM import, see Help…Resources…Technical Notes on SFM Database

Import.

 For LinguaLinks import, see Help…Resources…Technical Notes on LinguaLinks

Import.

2. Back up the FieldWorks project.

3. If you need to import Scripture data, use Translation Editor. Carefully check the

results to make sure the data imported correctly. If not, restore the last backup and try

again.

4. Back up the FieldWorks project.

5. If you need to import anthropological data, use Data Notebook. Carefully check the

results to make sure the data imported correctly. If not, restore the last backup and try

again.

6. Back up the FieldWorks project.

11 Moving a writing system to another computer
FieldWorks works fine when users transfer a database with simple writing systems to a

new computer and start up a FieldWorks program with that database. For more complex

cases (special keyboards, fonts, encoding converters, or PUA characters), users still need

to do several things:

 If you use Far East or right-to-left languages, enable them in Windows XP Regional

and Language Options.

 Install any fonts that are not on the target computer.

 Install any Keyman keyboards that are not on the target computer.

ICU and writing systems Page 18

6/20/2014

 Install any Windows input languages that are not on the current computer and enable

them in Windows Regional and Language Options.

 For any encoding converters that depend on programs such as TECkit or CC tables,

copy the appropriate files to the target computer and install them into SIL Encoding

Converters (preferably with the same name used on the source computer).

 If the language requires PUA characters, first make sure these definitions are in the

desired language definition file(s). Then copy the language definition file to the

FieldWorks\Languages directory on the target computer and use InstallLanguage -i -c

to install it into ICU.

After transferring the FieldWorks project to the new computer, you should be able to start

up and have everything work correctly. If you used a different name for the encoding

converter on the source computer than for the destination computer, go into the Writing

System Properties dialog and change the encoding converter to match the new name.

12 Changing the underlying writing system code
It should not be possible to create illegal writing systems in FieldWorks. It was possible

in older versions of WorldPad. It’s also possible to do this via SOLID and WeSay

imports and under the hood via XML files or SQL queries. If this happens, you’ll

probably encounter numerous crashes of the type:

Msg: InstallLanguage failed on file C:\Documents and Settings\All Users\Application

Data\SIL\FieldWorks\Languages\kaz_CHIARB.xml with code -18

COM message: Unspecified error

The -18 error message reported from InstallLanguage is "The Language Name is already

used as an ISO3 value". The problem is the ISO 639-3 value of Kazakh is kaz, but where

there are equivalent ISO 639-1 two-letter codes, ICU automatically translates the value to

the two-letter codes. The ISO 639-1 value for Kazakh is kk. So in this case,

InstallLanguage issues an error message to warn the user that the code they are using has

conflicts with ICU and it should be changed.

When creating a writing system in Flex, Data Notebook, or TE the new writing system

dialog automatically converts kaz to kk and everything is fine. These programs use the

Ethnologue database delivered with FieldWorks to make this substitution. Since

WorldPad is designed to work independently from other FieldWorks applications and

databases, it does not provide this automatic conversion. WorldPad 5.0 warns the user

when this condition is encountered and requires them to change the code to something

legal.

If you do encounter these error messages, the solution is to change the underlying code of

the writing system. There may be other cases where changing this code would be

desirable to make it more standard. The easiest way to do this is.

1. Close all FieldWorks apps.

2. Start...Run and type dbmt

3. Click OK to the logon dialog

4. Select a project name from the combo box at the top

5. Paste this query in the box and press F5 to execute

 select IcuLocale from LgWritingSystem where IcuLocale = 'kaz_CHI'

ICU and writing systems Page 19

6/20/2014

6. If something shows up in the bottom pane, then paste this into the box and press F5

 update LgWritingSystem set IcuLocale = 'kk_CHI' where IcuLocale = 'kaz_CHI'

7. Repeat 4-6 for any other projects that may use this same writing system.

8. From a Cmd window, execute the following command

 InstallLanguage -r kaz_CHI

These steps will remove the old code from ICU and will change the code in existing

databases. When a project is restarted, it will use the correct kk_CHI code. However, if

you restore from an older database that has the older code, it will reappear and you'll need

to repeat this process to get rid of it again.

Also, if you have WorldPad .wpx files that used it, you'll need to fix it in those as well.

You can do this by opening the files(s) in a text editor, such as ZEdit (Start...Run zedit),

and doing a search and replace to replace kaz_CHI with kk_CHI.

If you have more than one writing system that needs to be renamed, you should use the

following query in step 5:

 select IcuLocale from LgWritingSystem where IcuLocale like 'kaz%'

Then in step 6 you’ll need to execute separate queries to fix each writing system that is

returned from step 5, making appropriate changes to the old and new codes. In step 8

you’ll need to repeat the command for each old writing system code. Also, in WorldPad

files, you’ll need to make appropriate changes for each writing system.

