
6/13/2013 1

Python database access
Ken Zook

August 27, 2009

Contents
Contents .. 1
1 Introduction ... 2
2 Installation... 2
3 FDO information ... 2

4 Getting started in IronPython .. 3
4.1 Working with Python.NET .. 4

5 Working with owning properties .. 5
6 Working with reference properties ... 6
7 Working with basic properties .. 7

7.1 Strings... 7

7.1.1 FieldWorks strings .. 7
7.1.2 MultiUnicode/MultiBigUnicode ... 8

7.1.3 MultiString/MultiBigString .. 8
7.1.4 String/BigString .. 8
7.1.5 Unicode/BigUnicode... 9

7.2 Other Properties.. 9
7.2.1 Booleans .. 9

7.2.2 Integers .. 9

7.2.3 Time .. 9

7.2.4 GUIDs ... 9
7.2.5 GenDates ... 10

7.2.6 Binary .. 10
8 Working with COM interfaces .. 10

8.1 Accessing class/property metadata information ... 10

8.2 Accessing FieldWorks strings .. 11
8.3 Creating FieldWorks strings... 13

9 Adding and deleting objects.. 14
9.1 Adding objects.. 14

9.2 Deleting objects .. 14
10 Example dumping information from the lexicon .. 15
11 Example changing strings in Interlinear Texts ... 15

12 Miscellaneous examples ... 17
13 Accessing FieldWorks source code .. 18
14 Using FlexApps .. 18
15 Using the Natural Language Toolkit (NLTK) .. 18

15.1 Collocation Example .. 19
15.2 Collocation Example Using FlexApps ... 19

Python database access Page 2

6/13/2013

1 Introduction
IronPython is a free Python program based on .NET Runtime 2.0, so it allows calls to the

FDO layer of FieldWorks. This allows Python programs to access and modify the

database similar to C# and other programs that interface with the .NET Runtime. Python

can also be used in the bulk edit tools in Flex. See Bulk edit issues.doc, section 5.5.1 for

information on this.

Note: In order to support the possibility of using the Firebird database engine in addition

to Micrsoft SQL Server, and due to limited length of names in Firebird, some class,

property, and procedure names were shortened in FieldWorks 5.4 compared to earlier

versions. The spreadsheet, Model name changes.xls, lists the changes that were made. If

you had programs for older versions you may need to make a few of these name changes

for it to continue to work in FieldWorks 5.4 and later.

Caution: As with any method for modifying the database outside of a FieldWorks

program, if you do not know what you are doing, you can inadvertently damage the data.

FieldWorks applications may no longer run or it could do damage in a way that will not

show up until later. You can freely use IronPython to explore existing data, but be

extremely cautious about making any changes to the database. Any time you plan to do

this, make sure you first back up the data and check carefully what you did before going

on. It is safer to use FDO via IronPython than using SQL directly in the database.

However, it is still possible to cause irreparable damage with either approach.

Other versions of Python that can handle COM interfaces adequately should be able to

work with ISilDataAccess, IVwOleDbDA, and IVwCacheDa, IOleDbEncap, and

TsString-related COM interfaces to access and modify the database without using FDO.

See http://fieldworks.sil.org/objectweb for details on these interfaces.

2 Installation
You can download a free copy of IronPython at

www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython. Here is how to install

IronPython:

1. Download IronPython-1.0.1-Bin.zip from the web site.

2. Unzip the file into a directory (e.g., in a Python directory under the FieldWorks

directory). You will probably want to move the files from the IronPython-1.0.1

directory up to the Python directory to make access easier.

3. If desired, add the directory containing ipy.exe to your path to make access easier.

4. To allow IronPython to work with SIL Encoding Converters, create this registry key:

 HKEY_LOCAL_MACHINE\SOFTWARE\Python\PythonCore\2.5

and add an InstallPath string variable that gives the path to your ipy.exe.

3 FDO information
IronPython accesses the FieldWorks database through the FieldWorks Data Objects

(FDO) layer. This is an object-oriented business layer that makes access to the database

more intuitive. FDO is written in C# based on .NET 2.0, so its methods can be accessed

from IronPython.

FDO provides

Python database access Page 3

6/13/2013

 generated classes for every class in the FieldWorks conceptual model

 generated methods on those classes for every property defined in the FieldWorks

conceptual model, and

 many hand-written methods on common classes providing additional functionality.

See fdoHelp.doc for an introduction to FDO. The current FDO programmer documentation

is in FDO.chm, which was generated from the C# source code. Additional COM interfaces

needed to deal with Strings and other information are in COMInterfaces.chm. They were

also generated from C# source code.

In FDO.chm, use the index to find any FieldWorks class and get a list of all members on

that class. This includes the generated property methods as well as hand-written methods.

For each one, follow the link to discover the arguments to the method and the return

information. Use a similar process in COMInterfaces.chm to get information on COM

interfaces.

4 Getting started in IronPython
To start IronPython, open a DOS box on the c:\Program Files\SIL\FieldWorks directory so it

can access FDO.dll and related FieldWorks DLLs. To run the program from the DOS box,

type ‘ipy’ (including a path if ipy.exe cannot be located along the path). This gives you an

IronPython prompt (e.g., >>>) in which you type Python commands. To exit from

IronPython, type Ctrl+Z and press Enter.

To access a FieldWorks database in IronPython:

1. Import the .NET Common Language Runtime system, then import FDO.dll.

2. Import System methods if you plan to use time or GUID properties.

3. In order to create FieldWorks objects and access all their methods, import the

different database modules, and COMInterfaces.

4. Get a cache object on the database you want to access, then get the LangProject from

the cache.

5. The following IronPython commands can be entered at the Python prompt to do these

things.:

import clr
clr.AddReference("FDO")
from SIL.FieldWorks.FDO import *
from System import *
from SIL.FieldWorks.FDO.Cellar import *
from SIL.FieldWorks.FDO.Ling import *
from SIL.FieldWorks.FDO.Scripture import *
from SIL.FieldWorks.FDO.Notebk import *
from SIL.FieldWorks.FDO.LangProj import *
clr.AddReference("COMInterfaces")
from SIL.FieldWorks.Common.COMInterfaces import *
cache = FdoCache.Create("TestLangProj")
lp = cache.LangProject

Note: For FieldWorks 4.0.1 or earlier, you’ll also need to insert these additional lines

before the COMInterfaces lines above:

clr.AddReference("FwKernelLib")
from FwKernelLib import *
.from SIL.FieldWorks.FDO.Cellar.Generated import *
from SIL.FieldWorks.FDO.Ling.Generated import *
from SIL.FieldWorks.FDO.Scripture.Generated import *

Python database access Page 4

6/13/2013

from SIL.FieldWorks.FDO.Notebk.Generated import *
from SIL.FieldWorks.FDO.LangProj.Generated import *

In the Create method above, use the name of your database. From the LangProject object,

you can navigate the ownership hierarchy to get to any object owned by the language

project. The FDO cache holds information read from the database. When you make

changes to the cache, these changes are immediately written to the database.

Note: Case is critical when dealing with class and method names.

IronPython provides some support for investigating objects. After getting the ‘lp’ object

above representing the language project, enter this command:

dir(lp)

This gives an alphabetical list of the methods available. One of these is LexDbOA. You

can get some information on this method with this command:

print lp.LexDbOA.__doc__

You can also find out what class a variable represents:

lp.__class__

You get more helpful information by referring to FDO.chm.

There are three ways you can run an IronPython program:

A. Start IronPython in a DOS box with ‘ipy’, then type your Python commands directly

at the IronPython prompt.

B. Enter the Python commands into a text file and start IronPython in a DOS box with

‘ipy’. Then copy your commands from the text file and paste them into the DOS box

at the IronPython prompt and press Enter to execute the last line (when needed). To

paste them into a DOS box, right-click and choose Paste.

C. Enter the Python commands into a text file (e.g., test.py) and execute the text file

directly using this DOS command:
 ipy test.py

4.1 Working with Python.NET

(This section is thanks to Craig Farrow.) Python.NET can also be used to access the

FDO.dll. Python.NET supports standard Python C libraries such as CElementTree (used

by the NLTK library) and others, which aren’t supported in IronPython. However, there

are some differences in the way Python.NET and IronPython behave:

 The DLL has to be on the path for Python.NET to import the namespace. IronPython

doesn’t seem to care.

 IronPython automatically references ScrFDO.dll, but Python.NET doesn’t, so it has to

be explicitly referenced.

The following code snippet works in both versions of Python to get access to FdoCache:

This line seems to be the best way to get IronPython
and Python.NET to both work:
* IronPython doesn't support .pth files;
* Python.NET doesn't import the name-space without the DLL being
on the path.
import sys
sys.path.append("c:\\program files\\sil\\fieldworks\\")

import clr

Python database access Page 5

6/13/2013

For some unknown reason FdoCache create fails with a TypeLoadException
under Python.NET if ScrFDO is not added here.
IronPython works fine without this.
clr.AddReference("FDO")
clr.AddReference("ScrFDO")

from SIL.FieldWorks.FDO import FdoCache

db = FdoCache.Create() # No name opens the first db on the default server
print "\t\t", db.ServerName, db.DatabaseName

5 Working with owning properties
FDO suffixes owning properties to indicate the type of property:

 -OA owning atomic

 -OC owning collection

 -OS owning sequence

This program prints the headword for all entries in the lexicon:

import clr
clr.AddReference("FDO")
from SIL.FieldWorks.FDO import *
cache = FdoCache.Create("TestLangProj")
lp = cache.LangProject
lexicon = lp.LexDbOA
for entry in lexicon.EntriesOC :
 print entry.ReferenceName

Since LangProject_LexDb is an atomic owning property, FDO provides the LexDbOA

method to return the LexDb. LexDb_Entries is an owning collection, so FDO provides

the EntriesOC method to access this property. The ‘for’ loop in this example gets each

entry and prints the ReferenceName, which actually returns a string with the HeadWord.

FDO provides a HeadWord method that returns a TsString, but IronPython cannot

instantiate TsStrings at this point.

If you want to instantiate a single entry and the first sense in that entry, instead of

processing the loop, use these methods, assuming ‘lexicon’ is set to the LexDb:

hvoEntry = lexicon.EntriesOC.HvoArray[0]
entry = CmObject.CreateFromDBObject(cache, hvoEntry)
hvoSense = entry.SensesOS.HvoArray[0]
sense = CmObject.CreateFromDBObject(cache, hvoSense)

The EntriesOC method on LexDb returns an FdoOwningCollection class. One of these

methods is HvoArray, which returns an array of integers corresponding to the database

Ids of the owned objects. Hvo in FieldWorks stands for ‘Handle to a Viewable Object’,

but anymore this is usually represents the object ids from the database. Once you have the

Database Id, use the CreateFromDBObject method on CmObject to instantiate that object

in the cache and load in basic properties from the database. In the first case above, Flex

provides an entry object representing the first entry in the Entries array.

The SensesOS method on LexSense returns an FdoOwningSequence class. One method

is HvoArray, which returns an array of database Ids. The example above picks the first

one and instantiates a LexSense from this. With these entry and sense objects, you can

access the properties on each one.

Once you have an object, you may want to access various information about that object:

Python database access Page 6

6/13/2013

print sense.Hvo
print sense.OwnerHVO
print sense.OwningFlid
print sense.OwnOrd
print sense.ClassID

 Hvo returns the Hvo or database Id of the sense.

 OwnerHVO returns the Hvo of the owning object.

 OwningFlid returns the owning Field Id (flid) on the owning object that owns the

sense.

 OwnOrd returns the ord value from the database that determines the sequence in a

sequence property.

Note: Numbers do not have to be sequential.

 ClassID returns the ‘clsid’ for the sense.

Any time you need to know what methods are available, or the arguments and return

values for methods, refer to FDO.chm.

6 Working with reference properties
FDO suffixes reference properties to indicate the type of property:

 -RA reference atomic

 -RC reference collection

 -RS reference sequence

In many places you need an LgWritingSystem Id to pick from multilingual properties.

You can get this information from the LangProject ‘lp’ in several ways:

wsv = lp.CurVernWssRS.HvoArray[0]
wsa = lp.CurAnalysisWssRS.HvoArray[0]

The CurVernWssRS method on LangProject is a reference sequence property that returns

an FdoReferenceSequence class. Use the HvoArray method on this class to get the first

writing system Hvo. You can also use the CmObject.CreateFromDBObject method as

illustrated above to get the actual LgWritingSystem object. This is not needed to access

multilingual properties—only the Hvo.

Simpler methods can give the top vernacular and top analysis writing system values, as

long as you only need one writing system from each property:

wsv = lp.DefaultVernacularWritingSystem
wsa = lp.DefaultAnalysisWritingSystem

The SemanticDomainsRC method on LexSense returns an FdoReferenceCollection

containing the semantic domains referenced by the sense. Once you have a sense, use this

code to print the names of the semantic domains for the sense:

for sem in sense.SemanticDomainsRC :
 print sem.Name.GetAlternative(wsa)

The SenseTypeRA method on LexSense is an atomic reference property that returns a

CmPossibility:

sensType = sense.SenseTypeRA

For both owning and reference properties, atomic properties return an actual instance of

an object, while the collection and sequence properties return an array of Hvos that must

be instantiated if you want the actual objects.

Python database access Page 7

6/13/2013

Suppose you need to set the sense type for a sense to the ‘primary’ CmPossibility in the

Sense Types list. This takes more work than doing the same thing in SQL. You need to

first go to the list and then iterate through the items to find the desired one, instead of

simply using a query to return the item with the desired name. One way to do this,

assuming you already have the lexical database (lexicon), sense (sense), and default

analysis ws (wsa):

stList = lexicon.SenseTypesOA
for st in stList.PossibilitiesOS :
 if st.Name.GetAlternative(wsa) == "primary" :
 break
sense.SenseTypeRA = st

This gets the Sense Type list from the SenseTypesOA property of LexDb. It then iterates

through the PossibilitiesOS property looking for one with a ‘primary’ name. It finds it

and then breaks from the loop and sets the sense type for the sense to that item. Other

complications have not been addressed. For example, what should happen if the list does

not contain the desired item? If the list is hierarchical, you also need to recursively search

through the SubPossibilitiesOS property for each item as well.

To add or remove items in reference sequences or collections, look at FDO methods on

FdoReferenceSequence, FdoReferenceCollection, and FdoVector.

7 Working with basic properties

7.1 Strings

FieldWorks uses various methods for storing strings on objects, depending on the amount

of information it needs to store. See ‘Conceptual model overiew.doc’ section 1.5.1 for

background on this.

The Python console is very limited in showing Unicode characters. Python defaults to

ASCII when dealing with str string functions (e.g., str.upper(s)). When dealing with

Unicode strings you should use unicode functions (e.g., unicode.upper(s)). When

specifying a Unicode string in source code, you should add ‘u’ in front of the quoted

string. (e.g., u'αββα'). However, if you paste this in the console mode the Beta (U+3b2)

will be incorrectly converted to ANSI \xdf. In a Unicode string, you can mix actual

Unicode code points with quoted Unicode values (e.g., u'α\u03b2\u03b2α' is the same as

the previous string but will work properly in console mode). \u is used with 4

hexadecimal digits to represent values up to U+FFFF. For higher values, use \U plus 8

hexadecimal digits (e.g., u'α\U000F2090βα'). By writing values to a UTF-8 encoded file,

you can obtain the real Unicode values without the console mode incorrectly converting

them. See Section 10 for an example of this.

7.1.1 FieldWorks strings

Whenever you access a String, BigString, MultiString, or MultiBigString property, you

will need to work with some underlying COM interfaces that allow FieldWorks to embed

formatting, writing systems, and other objects inside the string. These interfaces are

discussed in sections 8.2 and 8.3.

Note that FieldWorks stores strings in Unicode NFD (normalization decomposed) format.

When you get a string from the database it will be in NFD, so your Python program will

Python database access Page 8

6/13/2013

need to handle this properly. When storing strings, FieldWorks will automatically convert

any string to NFD.

7.1.2 MultiUnicode/MultiBigUnicode

LexSense_Gloss is an example of a MultiUnicode string. Assuming ‘sense’ is a sense

object and ‘wsa’ is the analysis writing system, this command retrieves the string from

the gloss:

gloss = sense.Gloss.GetAlternative(wsa)

This sets the gloss for the wsa writing system:

sense.Gloss.SetAlternative("apple", wsa)

7.1.3 MultiString/MultiBigString

LexSense_Definition is an example of a MultiString FieldWorks String. Assuming

‘sense’ is a sense object and ‘wsa’ is the analysis writing system, this command retrieves

the raw Unicode string from the definition:

definition = sense.Definition.GetAlternative(wsa).Text

If you want details on the formatting of a string, you’ll need to get a TsString and use

properties and methods described in section 8.2 to get the formatting. The following

method returns a TsString for the defintion.

tss = sense.Definition.GetAlternativeTss(wsa)

To set a MultiString or MultiBigString value, you first need to construct a TsString with

appropriate formatting. Section 8.3 describes methods for creating TsStrings. You should

make sure every TsString defines a writing system for all code points in the string. Here’s

one way to set the definition for a sense.

tisb = TsIncStrBldrClass.Create()
tisb.SetIntPropValues(FwTextPropType.ktptWs.value__, FwTextPropVar.ktpvDefault.value__, wsa)
tisb.Append("A small round object.")
sense.Definition.SetAlternative(ITsIncStrBldr.GetString.Call(tisb), wsa)

Note, it is possible to set a definition using the following code, but this should never be

used because the string will have no formatting, which makes it invalid.

sense.Definition.SetAlternative("A small round object.", wsv)

7.1.4 String/BigString

LexSense_ScientificName is an example of a FieldWorks String. Assuming ‘sense’ is a

sense object, this command retrieves the raw Unicode string from the scientific name:

name = sense.ScientificName.Text

If you want details on the formatting of the string, you’ll need to get a TsString and use

properties and methods described in section 8.2 to get the formatting. The following

method returns a TsString for the scientific name.

tss = sense.ScientificName.UnderlyingTsString

To set a String or BigString value, you first need to construct a TsString with appropriate

formatting. Section 8.3 describes methods for creating TsStrings. You should make sure

every TsString defines a writing system for all code points in the string. Here’s one way

to set the scientific name for a sense.

tisb = TsIncStrBldrClass.Create()
tisb.SetIntPropValues(FwTextPropType.ktptWs.value__, FwTextPropVar.ktpvDefault.value__, wsa)

Python database access Page 9

6/13/2013

tisb.Append("tulip.")
sense.ScientificName.UnderlyingTsString = ITsIncStrBldr.GetString.Call(tisb)

Note, it is possible to set a scientific name using the following code, but this should never

be used because the string will have no formatting, which makes it invalid.

sense.ScientificName.Text = "tulip"

7.1.5 Unicode/BigUnicode

CmPossibility_HelpId is an example of a Unicode string. Assuming ‘poss’ is a

CmPossibility object, this command retrieves the string from the HelpId:

help = poss.HelpId

This sets the HelpId:

poss.HelpId = “ARC203”

7.2 Other Properties

7.2.1 Booleans

LexEntry_ExcludeAsHeadword is an example of a Boolean property. Assuming ‘entry’

is an entry object, this command retrieves the Boolean result:

bool = entry.ExcludeAsHeadword

This sets the Boolean:

entry.ExcludeAsHeadword = “true”

7.2.2 Integers

LexEntry_HomographNumber is an example of an integer property. Assuming ‘entry’ is

an entry object, this command retrieves the homograph number:

hom = entry.HomographNumber

This sets the Boolean:

entry.HomographNumber = 1

7.2.3 Time

LexEntry_DateCreated is an example of a time property. Assuming ‘entry’ is an entry

object, this command retrieves the create time:

time = entry.DateCreated

The time returned here is a .NET DateTime object. Its methods are available when you

execute the Python ‘from System import *’ command.

This sets the create date—the first to the current time and the second to any specified

time:

entry.DateCreated = DateTime.Now
entry.DateCreated = DateTime.Parse("11/7/2006 12:45:58 PM")

7.2.4 GUIDs

LexEntry_Guid is an example of a GUID property. Assuming ‘entry’ is an entry object,

this command retrieves the GUID:

guid = entry.Guid

Python database access Page 10

6/13/2013

The GUID returned here is a .NET GUID object. Its methods are available when you

execute the Python ‘from System import *’ command.

This sets the GUIDs—the first to a new GUID and the second to any specified instance:

entry.Guid = Guid.NewGuid()
entry.Guid = Guid("edef982a-f69a-4793-95fb-f4398e4a2ddf")

7.2.5 GenDates

RnEvent_DateOfEvent is an example of a GenDate. At this point, FDO has not

implemented access to GenDates, so you cannot use it to read or set these values.

7.2.6 Binary

Binary fields are implemented in FDO in different ways. Fields that hold style

information return an ITsTextProps interface. However, IronPython fails to instantiate

this COM interface at this point. UserView_Details is a property that returns a .NET Byte

Structure. Assuming ‘uv’ is a UserView object, this returns the Byte Structure:

bytes = uv.Details

Using the print command, it prints ‘System.Byte[]5, 0, 0, 0)’.

This sets the property with the Byte Structure:

uv.Details = bytes

8 Working with COM interfaces
FieldWorks uses COM interfaces for a number of the underlying functions such as

working with FieldWorks strings and accessing the MetaDataCache that provides

information about classes and properties. Some COM interfaces implement IDispatch,

and are easier to access via Python. Most of these underlying interfaces do not currently

implement IDispatch. For these interfaces, you need to use GetValue and Call methods.

To access properties, you would use Interface.PropertyName.GetValue(comObject).

To execute methods, you would use Interface.PropertyName.Call(comObject,

parameters…).

For definition of string-related COM interfaces, see ComInterfaces.chm. For definitions

of text properties, see TextServ.idh.

8.1 Accessing class/property metadata information

In section 5 we described how you can access the ClassId and OwningFlid for any object

in the databse. If you want to find out more information about the class and field

definitions, you need to use the MetaDataCache. From an FDO cache, you can access a

MetaDataCache as follows:

mdc = cache.MetaDataCacheAccessor

From the MetaDataCache you can access various information about classes and senses.

For information on MetaDataCache methods, refer to IFwMetaDataCache in

ComInterfaces.chm. For examples, the following methods retrieve the name of class 13

(CmPerson), the name of field 13001 (Alias), number of fields defined in the model

(around 821), and the number of classes in the model (around 173).

mdc.GetClassName(13)

Python database access Page 11

6/13/2013

mdc.GetFieldName(13001)
mdc.FieldCount
mdc.ClassCount

COM interfaces that return arrays need to use special marshalling to allow Python to

access the unmanaged memory used by the underlying COM code. The following code

produces a list of classes, giving the class number and name for each class.

clidCount = mdc.ClassCount
clidList={}
clidListSize = clidCount - 1
clidArray = MarshalEx.ArrayToNative(clidCount, int)
mdc.GetClassIds(clidCount,clidArray)
clidList=MarshalEx.NativeToArray(clidArray, clidCount, int)
for id in clidList:
 print id, mdc.GetClassName(id)

The following code produces a list of fields, giving the field number and name for each

class.

flidCount = mdc.FieldCount
flidList={}
flidListSize = flidCount - 1
flidArray = MarshalEx.ArrayToNative(flidCount, int)
mdc.GetFieldIds(flidCount,flidArray)
flidList=MarshalEx.NativeToArray(flidArray, flidCount, int)
for id in flidList:
 print id, mdc.GetFieldName(id)

The FDO cache provides some methods that access MetaDataCache information directly

without making the calls directly from the MetaDataCache (e.g., GetClassName,

GetFieldsOfClass, and GetFieldType).

8.2 Accessing FieldWorks strings

When you use a String, BigString, MultiString, or MultiBigString property, you will need

to work with underlying COM interfaces that allow FieldWorks to embed formatting,

writing systems, and other objects inside the string. These interfaces are described in

ComInterfaces.chm. To access information from a string, you use the ITsString interface.

Assuming tss is a TsString that you have created or accessed from a string property, you

can get the raw Unicode characters using the Text property (entire string) or GetChars

method (range from begin offset to end offset) of the ITsString interface.

ITsString.Text.GetValue(tss)
ITsString.GetChars.Call(tss,0,3)

The number of characters in the string can be obtained using the Length property.

print ITsString.Length.GetValue(tss)

A TsString holds a sequence of one or more runs. All of the code points in a given run

share the same properties, such as writing system, style, and formatting. ITsString has a

number of methods for accessing runs within the string. You can iterate through the runs

using the RunCount property (returns the number of runs in the string) and the

get_RunText method (returns the raw Unicode characters in the run).

for irun in range(ITsString.RunCount.GetValue(tss)):
 print ITsString.get_RunText.Call(tss, irun)

To obtain the properties of a run or a single code point within a run, you use the

ITsTextProps interface which provides methods for accessing a bundle of text properties.

There are two basic types of text properties: integer properties and string properties.

Python database access Page 12

6/13/2013

Integer properties return an integer that represents a writing system, a point size, an enum

indicating bold or italic, and similar types of integer property. A string property returns a

Unicode string that typically represents a style name, font name, or other string property.

The get_Properties method returns the properties for a given run, while the

get_PropertiesAt method returns the properties of a code point at a certain offset in a

string.

runProps = ITsString.get_Properties.Call(tss, 1)
runProps = ITsString.get_PropertiesAt.Call(tss, 35)

Once you have the bundle of properties, the ITsTextProps interface provides methods to

access the properties. The IntPropCount and StrPropCount properties return the number if

integer and string properties contained in the bundle.

ITsTextProps.IntPropCount.GetValue(runProps)
ITsTextProps.StrPropCount.GetValue(runProps)

The GetIntProp method returns an integer property at the specified offset within the

bundle of integer properties. This method returns an array of three integers. You can

access the three parts using array indexes as shown below. The first item in the array is

the value of the property, the second is the type of property, and the third is the variant

value of the property. This first example illustrates a writing system integer property with

a type of 1 (ktptWs), a variant of 0 (ktpvDefault) and a value of 40717 (the id of the

writing system for this run).

ITsTextProps.GetIntProp.Call(runProps, 0)
#(40717, 1, 0)
ITsTextProps.GetIntProp.Call(runProps, 0)[0]
#40734 = value = writing system id
ITsTextProps.GetIntProp.Call(runProps, 0)[1]
#1 = type = FwTextPropType.ktptWs.value__
ITsTextProps.GetIntProp.Call(runProps, 0)[2]
#0 =variant = FwTextPropVar.ktpvDefault.value__

This example illustrates an italic integer property with a type of 2 (ktptItalic), a variant of

3 (ktpvEnum) and a value of 2 (kttvInvert) which flips the italic flag from what it was

before.

ITsTextProps.GetIntProp.Call(runProps, 0)
#(2, 2, 3)
ITsTextProps.GetIntProp.Call(runProps, 0)[0]
#2 = value = FwTextToggleVal.kttvInvert.value__
ITsTextProps.GetIntProp.Call(runProps, 0)[1]
#2 = type = FwTextPropType.ktptItalic.value__
ITsTextProps.GetIntProp.Call(runProps, 0)[2]
#3 =variant = FwTextPropVar.ktpvEnum.value__

The GetStrProp method returns a string property at the specified offset within the bundle

of string properties. This method returns an array of two items. You can access the two

parts using array indexes as shown below. The first item in the array is the string value of

the property, the second is the type of string property. This example illustrates a named

style property that causes the text to default to the formatting contained in the specified

style from a stylesheet. The property type is 133 (ktptNamedStyle) and the value is

‘Emphasized Text’ which is defined in the style sheet for the lexicon.

ITsTextProps.GetStrProp.Call(runProps, 0)
#('Emphasized Text', 133)
ITsTextProps.GetIntProp.Call(runProps, 0)[0]
Emphasized Text = value = name of a style

Python database access Page 13

6/13/2013

ITsTextProps.GetIntProp.Call(runProps, 0)[1]
#133 = type = FwTextPropType. ktptNamedStyle.value__

8.3 Creating FieldWorks strings

There are several ways to create TsStrings. If you only need a single run with no

properties other than a writing system, you can use the TsStrFactory MakeString method.

The following example uses this method to create a string using the wsa writing system.

tsf = TsStrFactoryClass.Create()
tss2 = ITsStrFactory.MakeString(tsf,"A simple string.", wsa)
ITsString.Text.GetValue(tss2)
#'A simple string.'

Note: For FieldWorks 4.0.1 or earlier, instead of using TsStrFactoryClass.Create(), you’ll

need to use TsStrFactoryClass().

If you need more than a simple string, you would normally use the incremental string

builder (ITsIncStrBldr interface). With this string builder, you set the properties you want,

append the text for that property, then set/clear properties for the next run, append text for

that run. After building the string, use the GetString method to return the final TsString.

The following example creates a string ‘This is a discussion about las casas.’ where the

writing system for ‘las casas’ is the vernacular writing system and the rest of the string is

the analysis writing system. The word, ‘discussion’, uses the Emphasized Text style,

which would be italic in the lexicon, if you you haven’t redefined this style. In addition to

‘las casas’ being in a different writing system, the italic flag for this text is inverted from

the normal text. In this case, since the surrounding text is not italic, ‘las casas’ will be

italic.

tisb = TsIncStrBldrClass.Create()
tisb.SetIntPropValues(FwTextPropType.ktptWs.value__, FwTextPropVar.ktpvDefault.value__, wsa)
#SetIntPropValues(int tpt, int nVar, int nVal) where tpt = 1, nVar = 0, nVal = 40734
tisb.Append("This is a ")
tisb.SetStrPropValue(FwTextPropType.ktptNamedStyle.value__, "Emphasized Text")
tisb.Append("discussion")
tisb.SetStrPropValue(FwTextPropType.ktptNamedStyle.value__, "")
tisb.Append(" about ")
tisb.SetIntPropValues(FwTextPropType.ktptWs.value__, FwTextPropVar.ktpvDefault.value__, wsv)
tisb.SetIntPropValues(FwTextPropType.ktptItalic.value__, FwTextPropVar.ktpvEnum.value__,
FwTextToggleVal.kttvInvert.value__)
tisb.Append("las casas")
tisb.SetIntPropValues(FwTextPropType.ktptWs.value__, FwTextPropVar.ktpvDefault.value__, wsa)
tisb.Append(".")
tss = tisb.GetString()

When getting strings from builders, sometimes the simple tisb.GetString() method will work,

but at other times you need to specify the more precise code ITsIncStrBldr.GetString.Call(tisb).

Note: For FieldWorks 4.0.1 or earlier, instead of using TsIncStrBldrClass.Create(), you’ll

need to use TsIncStrBldrClass().

If you want to modify an existing string, you would use an TsStrBldr interface that allows

you to modify an existing string by inserting or deleting text, or changing properties for

some range within the string. The following example continues from the previous

example and changes ‘is’ to ‘was’ in the tss string.

tsb = ITsString.GetBldr.Call(tss)
ITsStrBldr.RunCount.GetValue(tsb)
#5
ITsStrBldr.Text.GetValue(tsb)

Python database access Page 14

6/13/2013

#'This is a discussion about las casas.'
runProps = ITsStrBldr.get_PropertiesAt.Call(tsb,5)
ITsStrBldr.Replace.Call(tsb,5,7,"was",runProps)
ITsStrBldr.Text.GetValue(tsb)
#'This was a discussion about las casas.'
ITsStrBldr.RunCount.GetValue(tsb)
#5
tss = ITsStrBldr.GetString(tsb)
ITsString.Text.GetValue(tss)
#'This was a discussion about las casas.'

A TsStrBldr has many of the same functions as a TsString as far as examining runs, text,

and properties. But in addition, it allows you to make changes to the copy of the string in

the TsStrBldr. Notice the final argument for the Replace method is an ITsTextProps

interface. In this case we get the properties from the first character we are replacing and

use those properties for replaced text. When done, you can get the completed string out of

the TsStrBldr using the GetString property.

Other interfaces for working with text properties are ITsPropsBldr and ITsPropsFactory.

9 Adding and deleting objects

9.1 Adding objects

Assuming ‘entry’ is an entry object, you can add a new LexEtymology object to the entry

using

ety = LexEtymology()
entry.EtymologyOA = ety

For this to work, you have to make sure the name space that defines LexEtymology is

loaded. For FieldWorks 4.0.1 and earlier, you would use

from SIL.FieldWorks.FDO.Ling import *
from SIL.FieldWorks.FDO.Ling.Generated import *

For versions after FieldWorks 4.0.1 you don’t need the Generated line.

Here’s a more complete example that adds a LexEtymology object to the entry, along

with filling in information on the LexEtymology.

ety = LexEtymology()
entry.EtymologyOA = ety
ety.Form.SetAlternative("formal", wsa)
ety.Source = "French"
tisb = TsIncStrBldrClass.Create()
tisb.SetIntPropValues(FwTextPropType.ktptWs.value__, FwTextPropVar.ktpvDefault.value__, wsa)
tisb.Append("This was borrowed from French, which borrowed the word from Germanic")
ety.Comment.SetAlternative(tisb.GetString(), wsa)

9.2 Deleting objects

To delete an object, use the DeleteObject method on the cache which takes an ‘hvo’. This

deletes the object, along with everything it owns and removes references to it. In most

cases this is sufficient. For some things when you delete one object, some other object

should also be deleted since it is no longer needed.

Assuming ‘sense’ is a sense you want to delete, you can execute this command:

cache.DeleteObject(sense.Hvo)

For an atomic owning property, you can also use this form of the command:

Python database access Page 15

6/13/2013

cache.DeleteObject(entry.EtymologyOAHvo)

10 Example dumping information from the lexicon
Here is a simple IronPython program that lists all lexical entries with their top-level

senses listing the entry headword and sense gloss and definition for each one, separating

the fields with a semicolon and space. Note this method of listing the definition ignores

any formatting on the definition, but just returns the raw Unicode characters.

import clr
clr.AddReference("FDO")
from SIL.FieldWorks.FDO import *
cache = FdoCache.Create("TestLangProj")
lp = cache.LangProject
lexicon = lp.LexDbOA
wsv = lp.DefaultVernacularWritingSystem
wsa = lp.DefaultAnalysisWritingSystem
for entry in lexicon.EntriesOC :
 headword = entry.ReferenceName
 for sense in entry.SensesOS :
 glos = sense.Gloss.GetAlternative(wsa)
 definition = sense.Definition.GetAlternative(wsa).Text
 print headword + "; " + glos + "; " + definition

This works fine for data that displays on the console. However, if your lexicon has

Unicode characters that do not display, the following alternative will write the data to a

UTF-8 file so that you can actually see your data. This example also uses the

AutoLoadPolicy option that puts the cache in a mode that loads all data for a given table

in one query rather than individual queries for each entry. This results in a much faster

dump of data, especially for large databases.

import clr
import sys
clr.AddReference("COMInterfaces")
from SIL.FieldWorks.Common.COMInterfaces import *
setenc=sys.setdefaultencoding
setenc("utf-8")
out=open("dict.txt",'w')
clr.AddReference("FDO")
from SIL.FieldWorks.FDO import *
cache = FdoCache.Create("TestLangProj")
cache.VwOleDbDaAccessor.AutoloadPolicy = AutoloadPolicies.kalpLoadForAllOfObjectClass
lp = cache.LangProject
lexicon = lp.LexDbOA
wsv = lp.DefaultVernacularWritingSystem
wsa = lp.DefaultAnalysisWritingSystem
for entry in lexicon.EntriesOC :
 headword = entry.ReferenceName
 for sense in entry.SensesOS :
 glos = sense.Gloss.GetAlternative(wsa)
 definition = sense.Definition.GetAlternative(wsa).Text
 out.write(headword + "; " + glos + "; " + definition + "\n")

out.close()

11 Example changing strings in Interlinear Texts
In FieldWorks 4.0.1 or older, it is not possible to do a search and replace in the baseline

of interlinear texts. The next version implemented a search and replace dialog, but it only

Python database access Page 16

6/13/2013

works on a single text. If you have many texts, it may be useful to use a Python program

to make the changes.

The following program illustrates one way of doing this. It is written for FieldWorks

4.0.1 or older. In this case, the ‘search’ must be set to the string you want to change, and

‘replace’ must be set to the replacement text. Note that this program will change the

‘search’ text regardless of whether it is in the middle of a word or not. The

FdoCache.Create command needs to be set to the database name you want to change. To

use this program, save the contents to a UTF-8 file with a .py extension, then in a

command window, execute the python file. When done, it will print a message telling

how many strings were changed.

def Fix(s, search, replace):
 changed = False
 if s is None:
 return
 if s.find(search) >= 0:
 s = s.replace(search, replace)
 changed = True
 if s.find(search.capitalize()) >= 0:
 s = s.replace(search.capitalize(), replace.capitalize())
 changed = True
 if changed == True:
 return s

search = u"éĸǖ"
replace = u"εκν"
import clr
import System
import System.Text
search = System.String.Normalize(search, System.Text.NormalizationForm.FormD)
replace = System.String.Normalize(replace, System.Text.NormalizationForm.FormD)
clr.AddReference("FDO")
from SIL.FieldWorks.FDO import *
from System import *
clr.AddReference("FwKernelLib")
from FwKernelLib import *
clr.AddReference("COMInterfaces")
from SIL.FieldWorks.Common.COMInterfaces import *
cache = FdoCache.Create("TestLangProj")
lp = cache.LangProject
runsChanged = 0
for text in lp.TextsOC:
 for par in text.ContentsOA.ParagraphsOS:
 tss = par.Contents.UnderlyingTsString
 tsb = ITsString.GetBldr.Call(tss)
 if ITsString.Text.GetValue(tss) is not None:
 for irun in range(ITsStrBldr.RunCount.GetValue(tsb)):
 run = ITsStrBldr.get_RunText.Call(tsb, irun)
 strNew = Fix(run, search, replace)
 if strNew is not None:
 runProps = ITsStrBldr.get_PropertiesAt.Call(tsb,irun)
 bounds = ITsStrBldr.GetBoundsOfRun.Call(tsb, 0)
 ITsStrBldr.Replace.Call(tsb,bounds[0],bounds[1],strNew,runProps)
 runsChanged = runsChanged + 1
 par.Contents.UnderlyingTsString = ITsStrBldr.GetString.Call(tsb)
print "Changed " + runsChanged.__str__() + " runs."

There are several issues involved in this example.

Python database access Page 17

6/13/2013

 In order to include UTF-8 characters in the file, you’ll need to use an editor such as

Word or ZEdit that support UTF-8. In order for Python to interpret the file as UTF-8,

it must include a BOM at the beginning of the file.

 FieldWorks stores strings in NFD (Normalization Form Decomposed). Your program

must be prepared to handle this appropriately when reading data from the database. In

this case, we use the .NET normalization methods to ensure that ‘search’ and

‘replace’ are set to NFD.

 When specifying strings, you need to use the ‘u’ prefix to identify them as Unicode.

12 Miscellaneous examples
The following code will print the id of the vernacular writing system with the name

‘Kalaba’.

import clr
clr.AddReference("FDO")
from SIL.FieldWorks.FDO import *
from System import *
cache = FdoCache.Create("TestLangProj")
lp = cache.LangProject
wsa = lp.DefaultAnalysisWritingSystem
for ws in lp.VernWssRC:
 if ws.Name.GetAlternative(wsa) == "Kalaba":
 break

print ws.Hvo

The following code lists the id, ICULocale, and name for all writing systems in the

database:

import clr
clr.AddReference("FDO")
from SIL.FieldWorks.FDO import *
from System import *
cache = FdoCache.Create("TestLangProj")
lp = cache.LangProject
wsa = lp.DefaultAnalysisWritingSystem
for ws in cache.LanguageEncodings:
 print ws.Hvo.ToString() + "; " + ws.ICULocale + "; " + ws.Name.GetAlternative(wsa)

Output for this in TestLangProj is as follows:

40716; en; English
40719; fr; French
40721; de; German
40724; es; Spanish
40729; fr__IPA; French (IPA)
40731; xsta; Stacked Diacritics
40733; xkal; Kalaba
40735; ar_IQ; Arabic (Iraq)
40737; dv; Divehi
40739; zh; Chinese, Mandarin
41131; xfwt; FwTest

Python database access Page 18

6/13/2013

13 Accessing FieldWorks source code
If you want to access FieldWorks source code repository to help understand anything

about FieldWorks, you can use this process:

1. Go to http://www.perforce.com/perforce/downloads/ntx86_64.html and download Core

Perforce Windows Installer, and P4Win Installer.

2. Install the downloaded files.

3. On first screen accept default ‘User Installation’

4. Accept defaults until Perforce Client Configuration page. On this page, choose

Server Port: src.sil.org:1934

Username: anonymous

5. After installation, run program from Start...All Programs...Perforce...P4Win

6. In Client Workspace Wizard, accept default of ‘Select an existing client workspace’

7. In the Client/owner list choose anonymous anonymous

8. Choose Setting...Use Current as Default

9. For everything, you can expand depot, then right-click fw and choose Sync...Force

sync to Head Revision

14 Using FlexApps
Craig Farrow has written a collection of utilities called FlexApps, which can be found at

http://craigstips.wikispaces.com/FlexApps. These include:

 FlexCards is a language learning application for use with FieldWorks databases.

 FlexicanJumpingBean jumps to places in FLEx from a taskbar icon.

 CustomUtilities which shows examples of what you can do with the core module,

such as listing parts of speech, listing writing systems, and reading the lexicon.

 A function to extract texts from a FLEx database.

More details can be found at Craig’s website, as well as instructions how to install it.

15 Using the Natural Language Toolkit (NLTK)

from Steve Miller

The NLTK is an open source project containing natural language processing

capabilities, including a Chart Parser, Shift-Reduce Parser, POS Concordance,

Collocations, and much more. It is well documented. You can find it at www.nltk.org.

The NLTK book is very readable, and I recommend it. You can see the online version

at http://www.nltk.org/book, or you can pick up a copy from O'Reilly Publishers.

The NLTK can work on plain text files, HTML, and other files. One of the easiest

things to do is to copy a text to a plain text file (.txt). Then use the NLTK functions

on it.

http://craigstips.wikispaces.com/FlexApps
http://www.nltk.org/
http://www.nltk.org/book

Python database access Page 19

6/13/2013

15.1 Collocation Example

For example, to use the NLTK collocate function:

1. Install Python. (An installer is available in Windows.)

2. Install NLTK. (An installer is available in Windows.)

3. Put your text into a text file. (That is, a plain text file, with a .txt extension.)

4. Do the following commands, using Python's interface called IDLE (which is

installed with Python):

 from __future__ import division
 import nltk, re, pprint
 f = open('C:\My_File.txt')
 raw = f.read()
 tokens = nltk.word_tokenize(raw)
 text = nltk.Text(tokens)
 text.collocations()

This last will give you a deprecation warning if you are using Python 2.6. You can

ignore that. But then it will give you your collocations.

15.2 Collocation Example Using FlexApps

FLEx exports its interlinear documents in a variety of formats, but we do not presently

export its baseline to a vanilla text file. However, Craig Farrow has written a utility

and to extract texts from FieldWorks databases, and included it in his FlexApps. (See

the preceding section.) This is the code he sent:

Load the Flex DB Access module from FlexLibs

from FLExDBAccess import FLExDBAccess

If your data doesn't match your system encoding (in the console) then

redirect the output to a file: this will make it utf-8.

BUT This doesn't work in IronPython!!

import codecs

import sys

if sys.stdout.encoding == None:

 sys.stdout = codecs.getwriter("utf-8")(sys.stdout)

FlexDB = FLExDBAccess()

No name opens the first db on the default server

if not FlexDB.OpenDatabase(dbName = "", verbose = True):

 print "FDO Cache Create failed!"

 sys.exit(1)

Do some analysis of the Texts

import nltk, re, pprint

Python database access Page 20

6/13/2013

texts = FlexDB.lp.TextsOC

for t in texts:

 print "====", t.Name, "===="

 content = []

 for p in t.ContentsOA.ParagraphsOS:

 print " > ", p.Contents.Text

 if p.Contents.Text:

 content.append(p.Contents.Text)

 ## Need to tokenise according to language

 ## nltk.word_tokenize doesn't work with many modified letters.

tokens = nltk.word_tokenize(" ".join(content))

 tokens = " ".join(content).split()

 text = nltk.Text(tokens, name=t.Name)

 print text

print text.collocations()

Craig sent the following notes:

I guess people might want to feed all the texts into one collocation analysis, and that is easily achieved,
too. There are issues relating to parsing a text -- eg what are word-building characters, etc. I've just used
the basic 'split' function (breaks at whitespace) in that example. word_tokenize() made a mess of my
texts since it didn't recognise my IPA as word-building. So thought and customisation may be required in
each situation.

