Consistent Changes (CC) DLL Interface Documentation
Written 6/96 by Doug Case. Edited by Doug Rintoul. This is derived from the ccstate.c source code file. Last updated 9/1/97.

DLL Interface Overviews
int WINAPI CCLoadTable(char *lpszCCTableFile,

 HANDLE* hpLoadHandle,

 HINSTANCE hParent) –

This is DLL interface code used for the user to pass the name of the file with the change table. This routine has CC do appropriate initialization. One of the three CCLoadTable functions must be the first DLL routine called.

int WINAPI CCLoadTableFromBufferWithErrorCallback(const char *lpszBuffer,

 HANDLE FAR *hpLoadHandle,

 CCCompileErrorCallback * lpCCCompileErrorCallback);

This is DLL interface code used for the user to pass a change table in a buffer. If a compile error occurs in the CC table, then lpCCCompileErrorCallback is called to process the error. This routine has CC do appropriate initialization. One of the three CCLoadTable functions must be the first DLL routine called.

int WINAPI CCLoadTableFromBuffer(char *lpszBuffer,

 HANDLE FAR *hpLoadHandle)

This is DLL interface code used for the user to a change table in a buffer. This routine has CC do appropriate initialization. One of the three CCLoadTable functions must be the first DLL routine called.

int WINAPI CCReinitializeTable(HANDLE hReHandle) –

This DLL interface reinitializes the CC table, e.g. when you want the same CC table to apply to multiple input files. This is a DLL interface routine.

int WINAPI CCUnloadTable(HANDLE hUnlHandle)

This deallocates all buffers, memory allocated to store, match areas etc, and deallocates global variable structure. This must be the last routine called. This is a DLL interface routine.

int WINAPI CCSetErrorCallBack(HANDLE hErrHandle,

 CCErrorCallback * lpCCErrorCallback)

This initialization routine is called by the user to set the error routine of the user that the user wants called in case of errors. This is optional, and if not called (or if called with NULL) then CC does it own messages. This is a DLL interface routine.

int WINAPI CCSetUpInputFilter (HANDLE hSetUpHandle,

 CCInputProc *lpInCBFunct,

 long lUserInputCBData)

This routine stores the address of the "input" callback function, etc. This is a DLL interface routine.

int WINAPI CCGetBuffer (HANDLE hGetHandle,

 char *lpOutputBuffer,

 int *npOutBufLen)

This routine is the core DLL routine for these interfaces used for when CC is a front end for the routine calling the DLL. It does most of the work, by calling the "main" or "regular" parts of CC.

int WINAPI CCProcessBuffer (HANDLE hProHandle,

 char *lpInputBuffer, int nInBufLen,

 char *lpOutputBuffer, int *npOutBufLen)

This routine is the core DLL routine for these interfaces when CC is called in "Visual Basic" mode, that is without callbacks, and there is just one buffer of data as input, and CC processes all that and returns the output. This is called by the user with an input buffer and length and an output buffer and length. This has CC process one buffer of input, and just return one buffer of output.

int WINAPI CCMultiProcessBuffer (HANDLE hMultiHandle,

 char *lpInputBuffer, int nInBufLen,

 BOOL bLastCallWithInput,

 char *lpOutputBuffer, int *npOutBufLen)

This routine is the core DLL routine for these interfaces when CC is called in "Visual Basic" mode, that is without callbacks, and there can be multiple calls to this routine. The user must keep calling this and sending in data, and getting data back again, until the input BOOL flag tells CC that this was the final call with input data.

int WINAPI CCSetUpOutputFilter (HANDLE hOutHandle,

 CCOutputProc *lpOutCBFunct,

 long lUserOutputCBData)

This routine stores the address of the "output" callback function, etc. This is a CC back end DLL interface routine.

int WINAPI CCPutBuffer (HANDLE hPutHandle,

 char FAR *lpPutBuffer, int nInBufLen,

 BOOL bLastBuffer)

This routine is the core DLL routine for these interfaces used for when CC is a back end for the routine calling the DLL. It does most of the work, by calling the "main" or "regular" parts of CC.

int WINAPI CCFlush (HANDLE hFlushHandle)

This routine works in conjunction with the CCPutBuffer routine. Calling this DLL routine is equivalent to calling the CCPutBuffer with a zero length and the boolean last buffer indicator set on.

int WINAPI CCProcessFile (HANDLE hProFileHandle,

 char *lpInputFile, char *lpOutputFile,

 BOOL bAppendOutput)

This routine is the core DLL routine for being passed in the names of the input and output files, and using them with CC.

Modes for Using the CC DLL
 There are different modes in which to use the CC DLL and its variety

 of interfaces. A user must first call the CCLoadTable interface. The

 user can optionally call the CCReinitializeTable and CCSetErrorCallBack

 interfaces. The user would then call a DLL interface mentioned below,

 either once or in a loop as appropriate for the interface and usage.

 Lastly the user would call the CCUnloadTable interface.

 FILE MODE
 This mode does not require the use of callback functions, and so it

 works with Visual Basic and Word Basic which do not support callbacks.

 The CC DLL interface CCProcessFile is the way to call the CC DLL and

 pass in an input file as the CC input, and pass in an output file to

 get the CC output. This is somewhat similar to the operation of the

 DOS CC.EXE program operation.

 SINGLE BUFFER MODE
 With this mode the user passes the CC DLL a buffer of data for CC

 to operate on, and an output buffer. This can be especially useful if

 there are small amounts of data to be operated upon. This does not

 require callbacks. There are two different DLL interfaces for this mode.

 The CCProcessBuffer DLL Interface is passed one buffer of input data,

 and returns one buffer of output data that CC has completed processing.

 The CCMultiProcessBuffer DLL Interface is meant to be called in a loop,

 passing one buffer of data in at a time. This interface is to be called

 repeatedly until there is no more output data from CC.

 BUFFERED STREAM MODE
 With this mode the CC DLL processes changes on a continual stream of

 input data. This uses callback functions to do this, so it not useful

 when using things like Visual Basic and Word Basic that do not support

 the use of callback functions. There are two pairs of CC DLL interfaces

 that can be used in this mode.

 One way is to use the CC DLL as a front end. That is the callback

 function passes the input data to CC, and the "main" CC DLL interface

 is passed the output data. The CC DLL interface CCSetUpInputFilter

 is called to set up the input callback function that the user provides,

 and the CC DLL interface CCGetBuffer is called by the user to receive

 the output data.

 The other way is to use the CC DLL as a back end. That is the "main"

 DLL interface passes the input data to CC, and the callback function

 that is provided by the user accepts that output data from CC. The

 CC DLL interface CCSetUpOutputFilter is called to set up the output

 callback function that accepts output data from CC, and the CC DLL

 interface CCPutBuffer is the "main" DLL interface to pass input data

 to CC. CCFlush works in conjunction with CCPutBuffer.

CC DLL Interface Descriptions
CCLoadTable

 int WINAPI CCLoadTable(char FAR *lpszCCTableFile,

 HANDLE FAR *hpLoadHandle,

 HINSTANCE hParent)

 Description:

 This DLL interface is passed a string with the name of

 the CC table to be used. It performs some CC processing

 to start things up with that CC table, and then it returns

 a handle for the area with the global variables after that.

 One of the three CCLoadTable functions needs to be the first

 CC DLL interface called.

 Input values:

 *lpszCCTableFile has the name of the CC Table to be used.

 hParent has the hinstance (handle) of the invoking task

 Output values:

 *hpLoadHandle points to the handle for CC variables.

 Return values:

 CC_SUCCESS If everything is fine, files are to be

 opened in the usual text mode.

 CC_SUCCESS_BINARY If everything is fine, files are to be

 opened in binary mode.

 non-zero Indicates an error occurred.

CCLoadTableFromBufferWithErrorCallback

int WINAPI CCLoadTableFromBufferWithErrorCallback(const char *lpszBuffer,

 HANDLE FAR *hpLoadHandle,

 CCCompileErrorCallback * lpCCCompileErrorCallback)

Description:

 This DLL interface is passed a buffer containing

 the CC table to be used. It performs some CC processing

 to start things up with that CC table, and then it returns

 a handle for the area with the global variables after that.

 One of the three CCLoadTable functions needs to be the first

 CC DLL interface called.

 “lpCCCompileErrorCallback” is called if there is a compile

 error in the CC table.

 Input values:

 lpszBuffer contains the CC Table to be used.

 lpCCCompileErrorCallback contains the Compile Error callback

 function.

 Output values:

 *hpLoadHandle points to the handle for CC variables.

 Return values:

 CC_SUCCESS If everything is fine, files are to be

 opened in the usual text mode.

 CC_SUCCESS_BINARY If everything is fine, files are to be

 opened in binary mode.

 non-zero Indicates an error occurred.

CCLoadTableFromBuffer

int WINAPI CCLoadTableFromBuffer(const char *lpszBuffer,

 HANDLE FAR *hpLoadHandle)

Description:

 This DLL interface is passed a buffer containing

 the CC table to be used. It performs some CC processing

 to start things up with that CC table, and then it returns

 a handle for the area with the global variables after that.

 One of the three CCLoadTable functions needs to be the first

 CC DLL interface called.

 Input values:

 lpszBuffer contains the CC Table to be used.

 lpCCCompileErrorCallback contains the Compile Error callback

 function.

 Output values:

 *hpLoadHandle points to the handle for CC variables.

 Return values:

 CC_SUCCESS If everything is fine, files are to be

 opened in the usual text mode.

 CC_SUCCESS_BINARY If everything is fine, files are to be

 opened in binary mode.

 non-zero Indicates an error occurred.

CCReinitializeTable
 int WINAPI CCReinitializeTable(HANDLE hReHandle)

 Description:

 This DLL routine is called to reinitialize CC without

 starting over totally from scratch. E.g. use this with

 new data, but using same change table. It uses the global

 variables that are in the area pointed to by the handle.

 Input values:

 hReHandle points to the handle for the global variables.

 Output values: The global variables referenced by hReHandle are updated.

 Return values:

 0 If everything is fine

 non-zero indicates an error occurred

CCSetUTF8Encoding

 int WINAPI CCSetUTF8Encoding(HANDLE hCCTableHandle, BOOL lutf8encoding)

 Description:

 This DLL routine is called to enable or disable global UTF8

 Support for a CC table. If CCSetUTF8Encoding is call with

 lutf8encoding set to TRUE, UTF8 encoding will be enabled. If

 CCSetUTF8Encoding is call with lutf8encoding set to FALSE,

 UTF8 encoding will be disabled.

 Input Value:

 hCCTableHandle is the handle to the CC table variables.

 lutf8encoding is specifies whether whether UTF8 support is

 to be enabled or disabled.

 Return values:

 0 Success.

 non-zero Error occurred.

CCUnloadTable
 int WINAPI CCUnloadTable(HANDLE hUnlHandle)

 Description:

 This DLL routine is called when the user is done with CC

 to free the global variable structure area and other stuff.

 This needs to be the last CC DLL interface called. This

 routine also unregisters the calling task.

 Input Value:

 hUnlHandle is the handle for the area to be freed.

 Output Value:

 The area for hUnlHandle etc are unlocked and freed.

 Return values:

 0 Successful completion.

 non-zero An error occurred.

CCSetErrorCallBack

 int WINAPI CCSetErrorCallBack(HANDLE hErrHandle,

 int (*lpUserFunc) (short, short unsigned,

 long unsigned, long *))

 Description:

 This DLL routine is called by the user to pass to CC the

 address of an error callback routine that the user wants

 CC to call if CC has an error. This routine stores the

 address of that routine as a CC global variable so that

 it can be used during the execution of CC. If the input

 parm is NULL (or if this optional routine is not called)

 then we use the default CC error checking routine.

 NOTE: file ccerror.h needs to be included by a user who

 writes their own error handler. ccerror.h has many

 comments in it describing to the user how they

 can write their own error handler.

 Input values:

 hErrHandle has our input handle for global variables.

 lpUserFunc is a pointer to the user's error routine. If

 this is NULL we use the default CC error routine

 (which is an int function with a short, short unsigned,

 and long unsigned parameters as input, and a long pointer

 which may contain user-defined data).

 Output values: The global variables referenced by hErrHandle are updated,

 CC variable errorFunction is set to either NULL, or to

 point to the user's error processing routine. If passed

 in NULL here (or defaults to NULL if this is never called)

 then we use the CC default error handler Process_msg().

 Return values:

 0 Success.

 non-zero Error occurred.

CCSetUpInputFilter
 int WINAPI CCSetUpInputFilter (HANDLE hSetUpHandle,

 CCInputProc FAR lpInCBFunct,

 long lUserInputCBData)

 Description:

 This DLL routine is called by the user to set up the input

 filter. The user's input filter routine is then

 called iteratively as needed by CC's

 CCGetBuffer DLL routine to pass input data to CC.

 This also allocates the input area that CCGetBuffer

 tells the input filter to fill up with data.

 Input values:

 hSetUpHandle This points to our global variable struct.

 lpInCBFunct Points to callback routine used to get input.

 This is called from the CCGetBuffer routine.

 lUserInputCBData This is input from the user to be saved

 by CC and passed to the input callback

 function every time that it is called.

 The usage of this is up to the user.

 (One example of how to use it would be

 to pass it to this routine as zero, and

 then test it in the callback routine and

 then know it is the first call the

 appropriate file can be opened).

 Callback function: The routine this points to has two input

 parameters, one is char FAR *, the other

 is int.

 One input value is the char FAR *, which

 points to a CC buffer. That is where the

 callback function is to put the data.

 The other input value is the int, which tells

 the callback function the maximum number of

 bytes to place in the buffer.

 For output the callback function puts data

 into the passed buffer.

 The int return value from the callback is

 the number of bytes placed into the buffer.

 Note that CC assumes that if the number of

 bytes returned is less than the passed in

 maximum number of bytes to place in the

 buffer then that means there is no more data

 to get ("end of file" so to speak).

 Note that if an error occurs in the input

 filter callback routine it is the user's

 responsibility to handle that error. If

 the user routine encounters an error then

 the user should return zero bytes to CC so it

 looks to CC like the input is exhausted.

 Output values: The global variables referenced by hSetUpHandle are updated

 to reflect the callback routine that gets CC input data.

 Return values:

 0 Success.

 non-zero Error occurred.

CCGetBuffer
 int WINAPI CCGetBuffer (HANDLE hGetHandle,

 char FAR *lpOutputBuffer,

 int FAR *npOutBufLen)

 Description:

 This DLL routine is called (usually repetitively) by the

 user. This uses the callback routine that is passed to

 CCSetUpInputFilter to "read" the input data, it calls the

 main part of CC then using this data as input data. This

 routine passes back as output the output data from CC.

 Input values:

 hGetHandle is the handle with input global data.

 *lpOutputBuffer points to a buffer area for our output.

 *npOutBufLen is the max size of the buffer CC outputs to.

 Output values: The global variables referenced by hGetHandle are updated.

 *lpOutputBuffer points to buffer with output data from CC.

 *npOutBufLen is the used amount of the output buffer.

 Return values:

 CC_GOT_FULL_BUFFER Success, buffer is full.

 CC_GOT_END_OF_DATA Success and "end of data".

 (This means done,

 do not call this again).

 Other Error occurred.

CCProcessBuffer
 int WINAPI CCProcessBuffer (HANDLE hProHandle,

 char FAR *lpInputBuffer, int nInBufLen,

 char FAR *lpOutputBuffer, int FAR *npOutBufLen)

 Description:

 This DLL routine is called by the user to have CC

 operations performed on one user input buffer, and have

 the results placed into one user output buffer.

 This interface does not use any callbacks at all.

 This does not save any data across calls, it processes

 all of the data that was passed into it. This calls

 CCReinitializeTable near the start of its processing,

 so a user that calls this repeatedly with different data

 does not have to bother with that.

 Input values:

 hProHandle is the handle with input global data.

 *lpInputBuffer points to a user buffer area with user input.

 nInBufLen is the size of the user input buffer. Note that

 if the user wants a null character at the end of

 this to be considered part of the input this

 length should include the null character. If the

 user does not want a null character included this

 should not include that, but note that the output

 will then not contain a null character at the

 end of the data, the user must then totally rely

 upon the *npOutBufLen output buffer length value.

 *lpOutputBuffer points to a user buffer area for CC output.

 *npOutBufLen is the max size of the buffer CC outputs to.

 Note that this will have to be longer than

 nInBufLen above if CC adds to the size of

 the user output at all (which it often does).

 If it is not big enough, CC terminates with

 an error message.

 Output values: The global variables referenced by hProHandle are updated.

 *lpOutputBuffer points to buffer with output data from CC.

 *npOutBufLen points to the used size of the output buffer.

 Return values:

 0 Success

 Other Error occurred.

CCMultiProcessBuffer
 int WINAPI CCMultiProcessBuffer (HANDLE hMultiHandle,

 char FAR *lpInputBuffer, int nInBufLen,

 BOOL bLastCallWithInput,

 char FAR *lpOutputBuffer, int FAR *npOutBufLen)

 Description:

 This DLL routine is called by the user to have CC

 operations performed on input data, and have

 the results placed into an output buffer. This saves

 data across calls. This is intended to generally be

 called multiple times. The last time the user passes

 input in the user turns on the bLastCallWithInput flag.

 Note the user might have to keep calling back (with no more

 input data) until return value of CC_GOT_END_OF_DATA given.

 Note that the size of the output may vary (it may even

 be zero in some cases). This does not utilize callbacks.

 Note also that if CC wants to pass back more output data

 than there is output buffer space supplied to CC that a

 return code of CC_CALL_AGAIN_FOR_MORE_DATA is returned.

 The user then must call again passing no input data until

 return code of CC_SUCCESS or CC_GOT_END_OF_DATA received.

 Input values:

 hMultiHandle is the handle with input global data.

 *lpInputBuffer points to a user buffer area with user input.

 nInBufLen is the size of the user input buffer. Note that

 if the user wants a null character at the end of

 this to be considered part of the input this

 length should include the null character. If the

 user does not want a null character included this

 should not include that, but note that the output

 will then not contain a null character at the

 end of the data, the user must then totally rely

 upon the *npOutBufLen output buffer length value.

 This buffer does not have to be filled each time.

 bLastCallWithInput is TRUE (1) if this is the last call

 from the user that supplies input data.

 it is FALSE (0) otherwise.

 Note that CC has a typedef defining

 BOOL to char.

 *lpOutputBuffer points to user buffer area for CC output.

 *npOutBufLen is the max size of the buffer CC outputs to.

 This buffer should be larger than the input

 buffer, to allow for differing amounts of

 data to be returned than was passed in, and

 to allow for any expansion of data if any.

 Output values: The global variables referenced by hMultiHandle are updated.

 *lpOutputBuffer points to buffer with output data from CC.

 *npOutBufLen points to the used size of the output buffer.

 Return values:

 CC_SUCCESS Success (output buffer

 may not be full though)

 CC_GOT_END_OF_DATA Success and "end of data".

 (This means done,

 do not call this again).

 CC_CALL_AGAIN_FOR_MORE_DATA The output buffer was not big

 enough to hold all the output

 data. The user must call back

 again passing no input data

 until all the "old" output

 data is returned to the user

 (with return value CC_SUCCESS

 or CC_GOT_END_OF_DATA). The

 user can then call again

 passing input data in again.

 Other Error occurred.

CCSetUpOutputFilter
 int WINAPI CCSetUpOutputFilter (HANDLE hOutHandle,

 CCOutputProc FAR lpOutCBFunct,

 long lUserOutputCBData)

 Description:

 This DLL routine is called by the user to set up the output

 filter. The user's output filter routine is then

 called iteratively as needed by CC's

 CCPutBuffer DLL routine to take output data from CC.

 The output filter routine would then presumably write

 the output data to a file, or do something like that.

 This also allocates the output area that CCPutBuffer

 tells CC to fill up with CC output data.

 Input values:

 hOutHandle This points to our global variable struct.

 lpOutCBFunct Points to callback routine that takes output.

 This is called from the CCPutBuffer routine.

 lUserOutputCBData This is input from the user to be saved

 by CC and passed to the output callback

 function every time that it is called.

 The usage of this is up to the user.

 (One example of how to use it would be

 to pass it to this routine as zero and

 then test it in the callback routine

 and then know it is the first call the

 appropriate file can be opened).

 Callback function: The routine this points to has two input

 parameters, one is char FAR *, the other

 is int.

 One input value is the char FAR *, which

 points to a CC output buffer. That is where

 the callback function is to get the data.

 The other input value is the int, which tells

 the callback function the number of bytes

 that CC has put into the buffer.

 For output the callback function gets data

 from the passed buffer, and handles is as

 appropriate (e.g. writes it to a file).

 The int return value from the callback is

 0 for success, non-zero if an error occurred.

 Output values: The global variables referenced by hOutHandle are updated

 to reflect the callback routine that takes CC output data.

 Return values:

 0 Success.

 non-zero Error occurred.

CCPutBuffer
 int WINAPI CCPutBuffer (HANDLE hPutHandle,

 char FAR *lpPutBuffer, int nInBufLen, BOOL bLastBuffer)

 Description:

 This is the main DLL routine when the user wants CC to be

 a back end to take output from another program in as CC

 input. This routine is called (usually repetitively) by

 the user. This uses the callback routine that is passed to

 CCSetUpOutputFilter to "take" CC input data, it calls the

 main part of CC then using this data as input data.

 Input values:

 hPutHandle is the handle with input global data.

 *lpPutBuffer points to a buffer area for input data to CC.

 nInBufLen is the size of the input data for this call.

 bLastBuffer is TRUE if this is the last buffer of data

 passed in with this interface, FALSE otherwise

 Output values: The global variables referenced by hPutHandle are updated.

 CC processes the data passed in, and passes output data

 to the callback function passed to CCSetUpOutputFilter.

 Return values:

 0 Success.

 non-zero Error occurred.

CCFlush
 int WINAPI CCFlush (HANDLE hFlushHandle)

 Description:

 This DLL routine just calls the CCPutBuffer routine with

 a zero length and the last buffer boolean set to TRUE.

 Calling this is just a "shorthand" way of calling

 CCPutBuffer with the appropriate parameters to flush the

 remaining data out after all of the input data has been

 passed in.

 Input values:

 hFlushHandle is the handle with input global data.

 Output values: The global variables referenced by hFlushHandle are updated.

 Return values:

 0 Success.

 non-zero Error occurred.

CCProcessFile

 int WINAPI CCProcessFile (HANDLE hProFileHandle,

 char *lpInputFile, char *lpOutputFile, BOOL bAppendOutput)

 Description:

 This is the main DLL routine when the user wants to just

 pass in the name of an input file and an output file to

 CC via the DLL, and have CC operate on them. The user

 uses no callback routines at all with this interface. The

 user calls this DLL interface just once (after calling

 CCLoadTable, and optionally CCSetErrorCallBack, and before

 calling CCUnloadTable).

 NOTE: It is the responsibility of the caller to make sure

 that the output file specified either does not

 exist, or if it does that the user wants CC to

 overwrite it (or append if bAppendOutput is on).

 NOTE: This does not support wildcards in the input/output

 filenames, or multiple input/output files.

 NOTE: If there is a lot of data it may take a long

 time to return from calling this interface.

 Input values:

 *lpInputFile is the name of the user input file.

 *lpOutputFile is the name of the user output file.

 bAppendOutput is set to TRUE (1) if the user wants to

 append to the output file if it already

 exists. Otherwise if the output file

 specified exists it will be overwritten.

 Output values: CC operates on the input file data, and writes output file.

 If there were no errors, then the output file name passed

 in by the user is filled with the CC output data.

 Return values:

 0 Success.

 non-zero Error occurred.

