Alphabetical Summary of Commands

Commands ending in “u” work with utf8 data. Their counterparts work with byte wide characters unless UTF8 processing has been enabled. In this case there is no difference between commands ending in “u” and their counterparts.

add(name) ‘number’
add numeric string to area name

any(name)
anyu(name)
match any element of storage area name

append(name)
store in area name, keep previous contents

back(number)
backu(number)
put last number of chars output back into input

begin
beginning of table or nested block

binary
process data in binary mode

c
comment

caseless
ignore case of first character of match

cont(name)
match or compare contents of area name

clear(name)
clear switch name

define(name)
defines a set of commands called name

div(name) ‘number’
divide value in name by numeric string

do(name)
execute set of commands called name

dup
duplicate match string

else
else

end
end nested block

endfile
match or output end of file char

endif
end of conditional commands

endstore
end storing

excl(name)
exclude (make inactive) group name

fol(name)
folu(name)
if following character is in area name

fwd(number)
fwdu(number)
forward number of characters (does not process)

group(name)
specifies a group called name

if(name)
if switch name is set

ifeq(name) ‘string’
if contents of area name equal string

ifgt(name) ‘string’
if contents of area name exceed string

iflt(name) ‘string’
if contents of area name is less than string

ifn(name)
if switch name is not set

ifneq(name) ‘string’
negative of ifeq(name) ‘string’

ifngt(name) ‘string’
if contents of area name does not exceed string

ifnlt(name) ‘string’
if contents of area name is not less than string

incl(name)
include (activate) group name

incr(name)
add one to contents of storage area name

mod(name) ‘number’
remainder when value in name is divided by numeric string

mul(name) ‘number’
product of value in name multiplied by numeric string

next
perform commands in next entry

nl
match or output new line

“”
null match; null replacement

omit(number)
omitu(number)
omit next number of characters from input

out(name)
output storage area name

outs(name)
output area name (storing continues)

prec(name)
precu(name)
if preceding character is in area name

read
read input from keyboard

repeat
repeat from preceding begin

set(name)
set switch name

store(name)
store in area name (discard previous contents)

sub(name) ‘number’
subtract numeric string from value in name

use(name)
use group called name

utf8
enable utf8 processing

wd(name)
wdu(name)
if characters before and after in storage area name

write ‘string’
output string to screen

wrstore(name)
output storage area name to screen

Command Line Options

Note that the options with a forward slash may also be used with the questions.

/c
compile table

/d
debug trace

-a
append to output file, if it already exists

-I
name of a file containing a list of input files

-n
noiseless - don’t beep or display processing messages

-o
output filename - may contain * or ? wildcards

-q
quiet - don’t ask, just replace output file if it exists

-s
compiled output table name

-t
table name - this is required

-u
enable utf8 processing

-w 
write command output filename

Commands by Logical groupings

Commands Using Switches:

clear(name)
clear switch name

if(name)
if switch name is set

ifn(name)
if switch name is not set

set(name)
set switch name

The following are similar to if(name) in function, but use store names, not switch names:

ifeq(name) ‘string’
if contents of area name equal string

ifgt(name) ‘string’
if contents of area name exceed string

iflt(name) ‘string’
if contents of area name is less than string

ifneq(name) ‘string’
negative of ifeq(name) ‘string’

ifngt(name) ‘string’
if contents of area name does not exceed string

ifnlt(name) ‘string’
if contents of area name is not less than string

Commands Using Store Numbers 
or Related to Storage Areas:

add(name) ‘number’
add numeric string to storage area name

any(name)
anyu(name)
match any element of storage area name

append(name)
store in area name, keep previous contents

cont(name)
match or compare contents of area name

div(name) ‘number’
divide storage area name by numeric string

Endstore
end storing

fol(name)
folu(name)
if following character is in area name

ifeq(name) ‘string’
if contents of area name equal string

ifgt(name) ‘string’
if contents of area name exceed string

iflt(name) ‘string’
if contents of area name is less than string

ifneq(name) ‘string’
negative of ifeq(name)

ifngt(name) ‘string’
if contents of area name does not exceed string

ifnlt(name) ‘string’
if contents of area name is not less than string

incr(name)
increment number in storage area name

mod(name) ‘number’
remainder when value in name is divided by numeric string

mul(name) ‘number’
multiply value in area name by numeric string

out(name)
output storage area name

outs(name)
output area name (storing continues)

prec(name)
precu(name)
if preceding character is in area name

store(name)
store in area name (discard previous contents)

sub(name) ‘number’
subtract numeric string from storage area name

wd(name)
wdu(name)
if characters before and after in storage area name

wrstore(name)
output storage area name to screen

Arithmetic Commands:

add(name) ‘number’
add numeric string to storage area name

div(name) ‘number’
divide storage area name by numeric string

incr(name)
increment number in storage area name

mod(name) ‘number’
remainder when value in name is divided by numeric string

mul(name) ‘number’
multiply value in area name by numeric string

sub(name) ‘number’
subtract numeric string from storage area name

Ordinary Number Commands:

back(number)
backu(number)
put last number of chars output back into input

fwd(number)
fwdu(number)
forward number of characters (does not process)

omit(number)

omitu(number)
omit next number of characters from input

Commands that can Cause a Loop:

back(number)
bacju(number)
if not sending output to something different or if not using a different group

repeat
if no way to stop repeating

“” (null match)
if not used with fwd, omit, or use

endfile
if matched and not output on right

do(name)
if two or more defined procedures call each other

Commands Using Group Numbers:

excl(name)
exclude (make inactive) group name

group(name)
specifies a group called name

incl(name)
include (activate) group name

use(name)
use group called name

Commands Using Defined Procedures:

binary
process data in binary mode

caseless
process data in caseless mode

define(name)
defines a set of commands called name

do(name)
execute set of commands called name

next
do next set of replacement commands

utf8
enable utf8 processing

Nested Block Commands:

begin
beginning of nested block

else
else

end
end of nested block

endif
end of conditional set of commands

if(name)
if switch name is set

ifeq(name) ‘string’
if contents of area name equal string

ifgt(name) ‘string’
if contents of area name exceed string

iflt(name) ‘string’
if contents of area name is less than string

ifn(name)
if switch name is not set

ifneq(name) ‘string’
negative of ifeq(name) ‘string’

ifngt(name) ‘string’
if contents of area name does not exceed string

ifnlt(name) ‘string’
if contents of area name is not less than string

repeat
repeat from previous begin

Commands Involving the Screen or Keyboard:

read
read input from keyboard

write ‘string’
output following string to screen

wrstore(name)
output storage area name to screen

Commands which occur Only on the Search Side:

any(name)
anyy(name)
match any element of storage area name

fol(name)
folu(name)
if following character is in area name

prec(name)

precu(name)
if preceding character is in area name

wd(name)

wdu(name)
if chars before and after in area name

define(name)
defines a set of commands called name

Commands which may occur on Either Side

Note that the meaning is often different on different sides:

begin
beginning of table or nested block

cont(name)
match or use contents of area name

endfile
match or output end of file character

nl
match or output new line

“”
null match; null replacement

summary.doc
Mar 11, 1998
1

