Teaching and Old Dog New Tricks

In spite of the availability of powerful, multi-platform tools for manipulating text such as Perl, and Python, the venerable CC program still finds wide use in the SIL community. Much of this I believe is due to two factors: the large installed base of CC users in SIL and the simplicity of installation and ease of use, especially for simple tasks. The command line version of CC is a single file; the Windows version is three files including the help file. There are no registry settings required or used. The programs can be installed simply by copying the files to an appropriate location.

Because CC is stilled used within the organization, CC development has been continuing but mostly in a back burner mode. The purpose of this article is to bring users up to date with the new features in the current version of CC. These new features have never really been officially documented; information has mostly been disseminated via word of mouth and email to interested parties. It is not my purpose to be a CC advocate, or to try to breath new life into the old program. But it is my hope that those who consider CC part of their toolbox will find these enhancements useful.

Windows Version

A Windows version of CC has existed for a few years now. It comes in two flavours, a 16-bit version (ccw.exe) and a 32-bit version (ccw32.exe). Unless you are running under Windows 3.1, it is highly recommended that you use the 32-bit version. The 32-bit version can handle long file names and has a larger back buffer and larger store areas. The following table lists the difference between the two programs:

Feature
16-Bit
32-Bit

Back buffer size
~2K characters
~20K characters

Maximum size of a match
~2K characters
~20K characters

Maximum store size
~32K characters
~128K characters

Maximum table size
~32K commands
~128K commands

Long file names
No
Yes

As of version 8.1.4, the maximum number of groups and stores has been increased from 127 to 1000 in both flavours of CC. The theoretical maximum number of changes in now stands at 16000, up from 5000, however this is limited by the “compiled” size of the cc table, which stands at ~32k for the 16-bit version, or ~128K. There is no easy way to determine the compiled size of a cc table; each character uses two bytes, and each command uses 2 bytes if a command has no arguments, or 2 bytes plus 2 times the number of arguments for commands that take arguments.

User Interface

The Windows version also sports a new user interface with command and file history. The following is the requisite screenshot of the Windows user interface and a description of each of the fields.

 [image: image1.png]
Current Directory:

This is the name of the current directory to be used as a starting point for filling in the other fields (the input file, change table file, and output file). This directory will be used if the absolute path is not specified for the input file, change table, or output file.

Input file:

This is the name of the file you want CC to use as input. If multiple input files are specified, then commas must separate the input files.

Input contains list of input files

If this check box is selected then CC will expect the input file you specify to contain the names of the input files you want CC to use as your input.

Changes file:

This is the name of the CC changes file you want CC to use. If no suffix is stated then a suffix of .cct is assumed. This file contains the CC syntax specified in the Consistent Changes Users Guide.

Multiple Change Tables

Multiple change tables may be specified in the changes file box. Commas must separate the change tables. The input is run through the first CC table, the output of that process is run through the second CC table and so on until the last CC table. The result of running the data through the last CC table is then sent to the output file.

Output file:

This is the name of the file that you want CC to put your output data in.

Overwrite existing output

If this check box is selected then CC will overwrite the output file you specified if it already exists. Note that if you do not select this and the output file you specified already exists you are prompted and asked if you wish to overwrite the existing file or not.

Append to existing output

If this check box is selected then the CC output will be appended to the output file you specified if the file already exists.

Multiple Output Files

Multiple output files can be specified. Commas must separate the output files. There is a one to one correspondence between input files and output files. The results of passing the first input file through the CC table will be sent to the first output file. The results of passing the second input file through the CC table will be sent to the second output file and so on. If more than one output file is specified, then the number of output files must match the number of input files.

Output contains list of output files

If this check box is selected then CC will expect the output file you specified to contain the names of the output files that you want CC to use as your output. The number of output files must match the number of input files.

Options

The following is a screenshot of ccw32 options:

 [image: image2.png]
CC for Windows allows you to easily edit your input and change table files, or to view your output file. You may (by selecting the Options button) specify your own custom editor (for your input and change table files) and your own custom viewer (for your output files). If you do not do this, CC will attempt to use the program that is associated with the file you are editing or viewing. If there is no file association for your file, the CC will use either notepad (for smaller files) or WordPad (for large files).

The size of the dropdown histories for the input file, cc table and output file can be set in the options dialog. Also all the histories can be cleared.

By default, CCW display a completion dialog box when a file is successfully processed. This completion box can be disabled in the options.

CCW.INI

CC for Windows creates a CCW.INI file that includes a user modifiable section which allows the user to change certain options. By default the check box settings are not saved across different CC for Windows runs, but by changing the “Save check box values as default” from “N” to “Y” you can cause CCW to retain the checkbox settings between runs.

Wild Cards

The input and output file names may contain wildcards (* and/or ?). Note however that if the output file name specification contains wildcards then you must have an equivalent match in your input file name specification.

Command Line Parameters

The Windows version of CC accepts the following command line parameters:
-t This specifies the changes table(s)
-o This specifies the output file(s)
-ol This specifies the name of the output file list
-n No completion message
-b Batch mode
-q Quietly overwrite the output file if it already exists
-a Append to output file if it already exists
-u input and output are both UTF8 files
-i Input file contains a list of input files
input file(s) The name(s) of the input file(s)

Notes:

1.
Commas must separate multiple output files and change tables.

2.
–o and –ol are mutually exclusive.

3.
If spaces are used in file names then the file names must be surrounded by double quotes (32 bit version only).

Unicode Support

Unicode support has been added to CC starting with version 8.1. CC can work with Unicode files using UTF-8 encoding. CC tables can be edited using a Unicode editor such as unired or Word 2002. The editor must be able to read and write UTF-8 text files.

The following is a description of what has been added for Unicode support:

1.
Added the "u" character specification that takes a UCS-4 character in a CC table and converts it to UTF-8 encoded character internally.

2.
Added a begin statement utf8 directive which enables UTF-8 support for fwd/back/omit/prec/fol/any/word commands. This statement assumes that both the input and output data use UTF-8 encoding. This statement allows for a mixture of legacy cc tables and Unicode cc tables to be used when chaining cc tables together. For example, cc tables might be chained together, the first cc table converting legacy data to UTF-8 data, and the second table manipulating the UTF-8 data output of the first table.

3.
Added a '-u' command line option which enables UTF-8 support for fwd/back/omit/prec/fol/any/word commands. This statement assumes that both the input and output data use UTF-8 encoding. Also if cc table chaining is used, then this option turns on UTF-8 support on for all cc tables.

4.
A check box in CCW and CCW32 to enable UTF-8 support for the above commands. This statement assumes that both the input and output data use UTF-8 encoding. Also if cc table chaining is used, then this option turns UTF-8 support on for all cc tables.

5.
Added fwdu/backu/omitu/precu/folu/anyu/wordu commands which executes the fwdu/backu/omitu commands checking for UTF-8 characters even when the utf8 directive or a command line options has not been specified. This allows CC to process a legacy-encoded file but still process Unicode data.

6.
Added a new interface to the DLL for turning on UTF-8 support after a CC table has been loaded in an application. The interface is

int WINAPI CCSetUTF8Encoding(HANDLE hCCTableHandle, BOOL lutf8encoding);

If CCSetUTF8Encoding is call with lutf8encoding set to TRUE, UTF8 encoding will be enabled. If CCSetUTF8Encoding is call with lutf8encoding set to FALSE, UTF8 encoding will be disabled.

The DLL is a drop in replacement for the old version of the DLL (8.0.x).

CC Debugger

An experimental CC debugger has been available for some time now. The debugger was never officially released, however it has proven useful for a number of people in the debugging of their CC tables.

There is no documentation for the debugger but it works similar to the Visual C++ debugger. The standard command line options for CC work for specifying the input, output and CC table, however wildcards, multiple input/output files and CC table chaining are not supported. If no command line options are specified, the debugger will try to use the input, output, and CC table parameters from the previous debug session. If it cannot open any of the required files, it will prompt you for the necessary information.

The debugger will create a file in the same directory as the CC table you are debugging. This file stores the break points and watches between debugging sessions. The file name will be the same name as the CC table but the extension will be .cdp.

The right mouse button brings up context sensitive menus in the CC table windows. This menu can be used to toggle breakpoints, view the contents of stores and switches, and add stores and switches to the watch window. The debugger is smart enough to know the difference between a switch and a store when you right click on an item in the CC table window even if you have switches and stores in the same window.

When the debugger is run, the CC table is taken from the edit buffer, not from the original file. You can make changes to the CC table on the fly and run it without having to save the table first. The input however is taken from the input file and any changes should be saved before running the CC table. If you run the CC table before saving the changes, the debugger will prompt you to save the input file. The output window is a read only window and cannot be edited. You can create a new CC table with the debugger but not a new input file.

A blue dot to the left of a line in the CC table window marks a break point. A yellow arrow to the left of a line marks the current execution point when the CC table is running.

The debugger has an animate feature that will run through the CC table showing each line of the CC table it executes or each match depending on which animate option you choose. Breakpoints are also active during animation.

The debugger has the Unicode support described above. However, under most circumstances, Unicode files will not display correctly in the debugger windows. There is also a bug, at least under Windows XP. Editing and saving a Unicode file that starts with a byte order mark with the debugger will corrupt the file. On the plus side, such files will be displayed properly in the debugger before and after a run. During a run, the input file will not be displayed properly, however the output will be.

