
6/13/2013 1

Conceptual model overview
Ken Zook

November 22, 2008

Contents
1 Introduction ... 1

1.1 Basic ownership .. 2

1.2 Inheritance... 3

1.3 Reference relationship .. 4

1.4 Summary of relationships ... 5

1.5 Basic properties ... 6

1.5.1 Strings ... 6

1.5.2 Other basic properties ... 7

2 Conceptual model documentation... 8

2.1 Classes... 8

2.1.1 Basic class information ... 9

2.1.2 Basic attributes .. 9

2.1.3 Owning and reference attributes ... 10

2.1.4 Back references ... 10

2.2 Diagrams ... 10

2.2.1 Possibility lists .. 10

2.2.2 Structured text ... 13

2.2.3 Language project ... 13

2.2.4 Lexical database .. 14

2.2.5 Lexeme form and alternate forms ... 15

2.2.6 Categories (parts of speech) .. 16

2.2.7 Pictures .. 17

2.2.8 Pronunciations... 18

2.2.9 Etymology ... 18

2.2.10 Example sentences .. 19

2.2.11 Reversal entries ... 19

2.2.12 Lexical relations & cross references ... 20

2.2.13 Wordform inventory ... 24

2.2.14 Interlinear text ... 25

2.2.15 Scripture .. 31

2.2.16 Data Notebook .. 32

2.2.17 Writing Systems .. 32

1 Introduction
FieldWorks uses an object-oriented conceptual model that defines the structure for every

kind of data it stores such as data notebook, lexical database, Scripture, and interlinear

text. This model consists of a hierarchy of classes and properties on those classes.

Properties may hold one or more instances of other classes, or it may hold a basic object

such as a string or an integer. Properties may also reference instances of classes. We use

Unified Modeling Language (UML) diagrams.

Conceptual model overview Page 2

6/13/2013

Note: In order to support the possibility of using the Firebird database engine in addition

to Micrsoft SQL Server, and due to limited length of names in Firebird, some class and

property names were shortened in FieldWorks 5.4 compared to earlier versions. The

spreadsheet, Model name changes.xls, lists the changes that were made.

1.1 Basic ownership

LexDb is a class that has an Entries property that owns a collection of LexEntry. The

diamond indicates an owning relationship. An object usually has a single owner, but a

few do not have owners. An object can never be owned by more than one object. “0..*”

indicates this property can hold any number of objects. “0..1” or just “1” indicates the

property can only own a single object (e.g., it’s an atomic property). A sequence property

has inherent order while a collection has no inherent order. Either one can be sorted when

displayed. On a diagram a sequence property has an “(ordered)” label. LexEntry has a

CitationForm property that holds a string. It also has a Senses property that owns a

sequence of LexSense. LexSense has a Gloss property holding a string and a Definition

property holding a string.

Conceptual model overview Page 3

6/13/2013

1.2 Inheritance

Classes can inherit properties from other classes. The root class for inheritance is

CmObject. It is an abstract class since there are no instances of this class. Instead, there

are instances of concrete subclasses of CmObject. Current diagrams do not indicate

whether a class is abstract or concrete. Go to the class definition for that information.

CmObject has a number of properties such as a Globally Unique Identifier (Guid) which

is a computer-generated identifier that is guaranteed to be unique in the entire world.

CmMajorObject inherits from CmObject. Inheritance is indicated by a line with an open

arrow pointing to the superclass. CmMajorObject is also an abstract class. It contains

properties for Name, DateCreated, and DateModified and also inherits all the properties

of superclasses. Thus, it also has a Guid property that is inherited from CmObject.

CmPossibilityList is a concrete class that inherits all of the properties from

CmMajorObject as well as from CmObject. In addition, it has Abbreviation and

ItemClsid properties and a Possibilities property that owns a sequence of CmPossibility.

CmPossibility is a concrete class that inherits from CmObject. This is typically not shown

on diagrams, since everything that does not inherit directly from some other class must

inherit from CmObject. CmPossibility has Name and Abbreviation properties in addition

to a SubPossibilities property that owns a sequence of CmPossibility. Rather than adding

multiple fields for translations of list items in each entry or sense as done by MDF,

FieldWorks stores the translations one time for each item in the list. The multiUnicode

Name and Abbreviation properties allow users to add any number of languages and/or

Conceptual model overview Page 4

6/13/2013

writing systems to the list. The default views show the top analysis writing system for

most list references, but in the configurable dictionary view and in export, FieldWorks

can show more than one writing system for list item references.

Numerous lists in FieldWorks use CmPossibilities or their subclasses. One is Ron Moe’s

semantic domain list. CmSemanticDomain is a subclass of CmPossibility, so it inherits

Name and Abbreviation from this class plus Guid from CmObject. It adds OcmCodes, a

string that lists the OCM codes that relate to this semantic domain. Other lists are Parts of

Speech, OCM Codes, and Entry Types.

All items in a list are owned either directly by a CmPossibilityList through the

Possibilities property or by another item in the list through the SubPossibilities property.

The ItemClsid property is used by the program to know what kind of class to add to this

list.

1.3 Reference relationship

This picture puts some of this together. Rounded corners indicate an instance diagram

rather than a class diagram. It can show how actual objects are interconnected in the

database.

The owner of most things in a FieldWorks project is the LangProject which does not have

an owner. It owns a single LexDb in the LexDb property and a single CmPossibilityList

in the SemanticDomainList property. One of the entries owned in the Entries property of

the LexDb is a LexEntry with a CitationForm of ‘bank’. That LexEntry owns two senses

in its Senses property. The first LexSense has a Gloss of ‘financial institution’ and the

second LexSense has a Gloss of ‘river edge’. The Semantic Domains possibility list owns

two CmSemanticDomains in its Possibilities property: a Name “Universe, creation” with

Conceptual model overview Page 5

6/13/2013

an abbreviation of “1” and a Name “Work and occupation” with an Abbreviation of “6”.

The first semantic domain owns another CmSemanticDomain through its SubPossibilities

property. This semantic domain has a Name “Water” and Abbreviation “1.3”. The second

semantic domain also owns another CmSemanticDomain through its SubPossibilities

property. This semantic domain has a Name “Finance” and an Abbreviation “6.8”.

Several more layers of semantic domains are in the outline but are not included in the

Language project illustration.

Users may want the “financial institution” sense to be related to the Finance semantic

domain. Both objects are already owned, so they cannot use an owning relationship. They

may have many senses related to the Finance semantic domain and do not want to have to

type this string over and over. The solution is a reference property called

SemanticDomains which essentially points from the sense to the semantic domain. The

diagrams show a reference as a line without the diamond. The reference property name is

close to the class that defines that relationship. Like owning relationships, reference

relationships can also be atomic, a collection (unordered), or a sequence (ordered). In the

diagram, the “river edge” sense points to the “water” semantic domain through the

SemanticDomains reference property.

1.4 Summary of relationships

This diagram summarizes the kinds of relationships used in Fieldworks. Inheritance is a

single arrow pointing to the superclass. In this case, A is the superclass and B is the

subclass. B inherits all properties from A. Owning relationships are lines with a diamond

and name by the class that defines this relationship. Reference relationships are lines

without arrows with a name by the class that defines this relationship. Owning and

Reference relationships can be

 atomic, where the property can hold 0 or 1 object

Conceptual model overview Page 6

6/13/2013

 collection, where the property can hold any number of unordered objects, or

 sequence, where the property can hold any number of ordered objects.

Owning and Reference relationships always define the class of object they can own or

refer to—in this case C. This means the property can hold instances of C or any

subclasses of C, but no other classes.

When a relationship property is defined in FieldWorks, the designer must choose one of

the following types. The object type code shown in parentheses is stored in the

Field$ table in the database.

 OwningAtom (23)

 ReferenceAtom (24)

 OwningCollection (25)

 ReferenceCollection (26)

 OwningSequence (27)

 ReferenceSequence (28)

1.5 Basic properties

1.5.1 Strings

FieldWorks uses two basic types of strings: Unicode and String. Unfortunately, these are

poorly named since both types are strings and both types store Unicode data, but

changing the names now would be very involved. Better names would be FieldWorks

Unicode strings and FieldWorks Strings.

A FieldWorks Unicode string is a plain sequence of Unicode code points. There is no

indication of a font or writing system for a Unicode string. Unicode strings cannot have

any embedded writing systems, formatting, or hot links.

A FieldWorks String is a sequence of Unicode code points. Along with the code points it

maintains additional information on each code point that always includes the writing

system it represents and optionally

 a format style to use for display purposes

 hard-coded formatting including font, face, point size, and color

 embedded objects such as hot links to external files or FieldWorks objects, and

 overlay tags which are links to possibility items.

A FieldWorks String is a rich Unicode string with a writing system and may hold many

embedded elements. A FieldWorks Unicode string is just a raw Unicode string with no

additional information.

In the FieldWorks conceptual model, properties (fields) can hold a

 single FieldWorks Unicode string

 collection of FieldWorks Unicode strings

 single FieldWorks String, or

 collection of FieldWorks Strings.

The collections are called MultiUnicode and MultiString. Each string in the collection

has a unique corresponding writing system. For example, a MultiString can have one

Conceptual model overview Page 7

6/13/2013

FieldWorks String for French, another for English, and yet another for Spanish. It cannot

have two FieldWorks Strings for Spanish. Each FieldWorks String can include

information such as nested writing systems and formatting. MultiUnicode works the same,

except it cannot have nested writing systems or formatting since the strings in a

MultiUnicode property are FieldWorks Unicode strings.

In the database, FieldWorks provides for short strings limited to 4,000 characters or long

strings that can hold a billion characters. In the database, some common string operations

such as sorting and searching work on short strings but not on long strings. FieldWorks

refers to the long versions as BigUnicode, BigString, MultiBigUnicode, and

MultiBigString.

When a string property is defined in FieldWorks, the designer must choose one of the

following types. The object type code shown in parentheses is stored in the Field$ table

in the database.

 String (13)

 MultiString (14)

 Unicode (15)

 MultiUnicode (16)

 BigString (17)

 MultiBigString (18)

 BigUnicode (19)

 MultiBigUnicode (20) (unused)

Another type of property appears to the user as a multiparagraph basic property. This

actually uses an owning atomic property holding an StText, but appears to be a field that

works very similar to a Word document. You can press Enter to start a new paragraph

and format paragraphs and characters similar to Word.

1.5.2 Other basic properties

The FieldWorks conceptual model provides for three types of numbers: Integer, Numeric,

and Float. At this point, only integers are used. The designer can specify that integers

have an optional minimum and maximum value. By default, an integer can

be -2,147,483,648 through 2,147,483,647 (4 bytes). If min/max are used to limit the

range to -32,768 through 32,767, the database will use a smallint (2 bytes). If min/max

are used to limit the range to 0 through 255, the database will use a tinyint (1 byte). In

some cases, an integer can represent an enumeration, although this is not enforced by the

database.

FieldWorks also provides the following:

 A Boolean type that is stored in the database as a single bit

 A Guid type that maps to a uniqueidentifier (16 bytes) in the database

A typical string form for a Guid is 6F9619FF-8B86-D011-B42D-00C04FC964FF.

 Two types for binary data: Image (up to 2,147,483,647 bytes) and Binary (up to 8,000

bytes)

At this point Image is not used (except as part of string formatting). Binary is

implemented in the database as varbinary (8000).

Conceptual model overview Page 8

6/13/2013

 Two types of dates: Time and GenDate

 Time uses a datetime type in the database that can store a date and time from

January 1, 1753 through December 31, 9999 with an accuracy of three-hundredths

of a second or 3.33 milliseconds.

 A GenDate is stored as an integer (4 bytes). It can be used to store dates such as

“unknown”, “January 3, 2455”, “before 1852”, and “around February, 1492”. It is

a decimal representation of a generic date without a time that can range from

21474 BC through 21474 AD. The format is [-]YYYYMMDDP
1

The designer must choose one of the following types for non-string basic properties. The

object type code shown in parentheses is stored in the Field$ table in the database.

 Boolean (1)

 Integer (2) (with optional minimum and maximum values)

 Numeric (3) (unused)

 Float (4) (unused)

 Time (5)

 Guid (6)

 Image (7) (unused)

 GenDate (8)

 Binary (9)

2 Conceptual model documentation
The main documentation for the FieldWorks conceptual model is in c:\Program

Files\SIL\FieldWorks\Helps\ModelDocumentation.chm. The upper left pane allows users to

choose between Classes, Diagrams, or Dictionary.

2.1 Classes

Click Classes in the upper left pane and the lower left pane gives a list of all of the

FieldWorks conceptual model classes. Click one of these and the right pane shows detail

for that class. The detail includes

 basic class information

 basic attributes (properties) defined on that class (not ones inherited from

superclasses)

 owning and reference attributes (properties) defined on that class, and

 back references (other classes that own or refer to this class).

1
 YYYY is the 1–5 digit year (negative is BC). 0000 is unknown.

MM is the 2 digit month (for BC months it is 13 - M). 00 is unknown.

DD is the 2 digit day (for BC days it is 32 - D). 00 is unknown.

P is one of the following:

 0 = Before (If GenDate = 0, it means nothing is entered)

 1 = Exact

 2 = Approximate

 3 = After

Conceptual model overview Page 9

6/13/2013

Many properties have a triangle at the left that users can click to toggle the display of

documentation for that property. They can also use buttons at the top to turn on or off all

documentation for this class. The illustrations shown here come from the

CmSemanticDomain class.

CmObject contains built-in information that does not show up in this help file.

The information shown in the class view is generated directly from a Unified Modeling

Language (UML) XML file that defines all the classes used in FieldWorks (other than

CmObject). This file is maintained using the MagicDraw program. This XML file is

transformed in various ways

 to provide this documentation file

 to provide code for generating the tables and fields in the database, and

 to generate basic source code for accessing the data via programming languages.

2.1.1 Basic class information

Classes have abbreviations, but they are basically unused at this point. Some classes are

just designed for inheritance purposes, so instances of this class cannot occur in the

database. The “abstract” flag for these classes is true. The flag is false for classes that can

be instantiated in the database. The “base” column contains a link to the superclass for

this class where you can see the properties that are inherited.

Classes are organized into six modules: Cellar, FeatSys, LangProj, Ling, Notebk, and

Scripture. Each module has a number.

Class information shows the module and the module number in which this class is

defined. Each class has a unique number, or class id, that is made by appending the 3-

digit class num value to the module num value. In this case the class id is 0066, or just 66.

Each property (attribute, or field) in the class also has a unique number, or field id, that is

made by appending the 3-digit num to the class id. For example, the field id for the

LouwNidaCodes property is 66001.

2.1.2 Basic attributes

This section lists all the basic properties defined on this class. Each property has a name

and a number that is used to build up the field id. The Signature indicates the type of

basic property stored in this field. The Other column lists any other flags such as min and

max values for integers.

Conceptual model overview Page 10

6/13/2013

2.1.3 Owning and reference attributes

This section lists all the owning and reference properties defined on this class. Each

property has a name and number that is used to build up the field id. The Card column

indicates whether the field is atomic, a collection, or a sequence. The Sig column

indicates the class that is owned or referenced. This property can hold instances of this

class or any of its subclasses.

2.1.4 Back references

This section shows any other classes that own or reference the current class, which is

shown in the Sig column. The Name includes the class name and the name of the

property on that class that owns or references the current class. The Num and Card

columns refer to the properties described in the Name column.

In this case, CmSemanticDomain is referenced by the RelatedDomains property of

CmSemanticDomain as well as by the SemanticDomains property of LexSense.

2.2 Diagrams

Click Diagrams in the upper left pane and the lower left pane gives a list of diagrams that

illustrate certain parts of the conceptual model. These diagrams are semi-generated by

MagicDraw with numerous hand edits. Click a link in the lower left pane and the right

pane displays that diagram. The diagrams are fairly accurate, but occasionally things are

missing that should be there. For any question, go to the class diagrams for accurate

information.

In the diagram, each class is indicated by a rectangle. The name of the class is at the top

and basic properties are listed inside the rectangle. Owning, reference, and inheritance

lines connect the boxes. Click a class rectangle and the window jumps to show that class

definition. Click a relationship line and the display jumps to show details on that

relationship.

Click Dictionary in the upper left pane and the right pane gives an alphabetical list of all

classes and relationship links along with the description for each one.

2.2.1 Possibility lists

The conceptual model diagram does not provide enough information to identify the type

of possibility owned in each list. The following table lists the properties that own each

Conceptual model overview Page 11

6/13/2013

CmPossibilityList, and then gives the name of that list and the type of possibility or

subclass that goes in that list.

Class and Owning Property Name of list Class in list

DsDiscourseData_ChartMarkers ······················ Chart Markers ················· CmPossibility

DsDiscourseData_ConstChartTempl ················· Constituent Chart Templates CmPossibility

LangProject_AffixCategories (unused) ·············· <none> ························· CmPossibility

LangProject_AnalysisStatus ··························· Possible Status ················ CmPossibility

LangProject_AnnotationDefs ·························· Annotation Definitions ······· CmAnnotationDefn

LangProject_AnthroList ································ Thesaurus ······················ CmAnthroItem

LangProject_CheckLists ······························· <none> ························· CmObject

LangProject_ConfidenceLevels ······················· Confidence Levels ············ CmPossibility

LangProject_Education ································· Education Levels ············· CmPossibility

LangProject_GenreList ································· Genres ·························· CmPossibility

LangProject_Locations ································· Locations ······················ CmLocation

LangProject_PartsOfSpeech ··························· Parts Of Speech ··············· PartOfSpeech

LangProject_People ····································· People ·························· CmPerson

LangProject_Positions ·································· Positions ······················· CmPossibility

LangProject_Restrictions ······························ Restrictions ···················· CmPossibility

LangProject_Roles ······································ Roles ··························· CmPossibility

LangProject_SemanticDomainList ··················· Semantic Domains ············ CmSemanticDomain

LangProject_TimeOfDay ······························ Time Of Day ·················· CmPossibility

LangProject_TranslationTags ························· Translation Types ············· CmPossibility

LangProject_WeatherConditions ······················ Weather ························ CmPossibility

LexDb_AllomorphConditions ························· Minor Entry Conditions······ CmPossibility

LexDb_DomainTypes ·································· Academic Domains ··········· CmPossibility

LexDb_EntryTypes ····································· Entry Types ··················· LexEntryType

LexDb_MorphTypes ···································· Major Entry Types ··········· MoMorphType

LexDb_References ······································ Lexical Reference Types ···· LexRefType

LexDb_SenseTypes ····································· Sense Types ··················· CmPossibility

LexDb_Status ·· Sense Status ··················· CmPossibility

LexDb_UsageTypes ···································· Usages·························· CmPossibility

MoMorphData_ProdRestrict··························· Productivity Restrictions ···· CmPossibility

ReversalIndex_PartsOfSpeech ························ Parts Of Speech-English ····· PartOfSpeech

ReversalIndex_PartsOfSpeech ························ <none> ························· PartOfSpeech

RnResearchNbk_EventTypes·························· Event Types ··················· CmPossibility

Scripture_NoteCategories ······························ Scripture Note Categories ··· CmPossibility

The conceptual model diagram does not provide enough information to be able to

identify the owning list for a possibility item (or subclass) that is referenced by a

particular property. The following table lists properties that reference a possibility and

gives the owning property of the list that owns these referenced items.

Reference to a CmPssibility or subclass Owner of CmPossibilityList owning items

CmAnnotation_AnnotationType ······························ LangProject_AnnotationDefs

CmOverlay_PossItems ··· Any possibility items

CmPerson_Education ·· LangProject_Education

CmPerson_PlaceOfBirth ······································· LangProject_Locations

CmPerson_PlacesOfResidence ································ LangProject_Locations

CmPerson_Positions ··· LangProject_Positions

CmPossibility_Confidence ···································· LangProject_ConfidenceLevels

CmPossibility_Researchers ···································· LangProject_People

CmPossibility_Restrictions ··································· LangProject_Restrictions

CmPossibility_Status ·· LangProject_AnalysisStatus

CmSemanticDomain_OcmRefs ······························· LangProject_AnthroList

CmSemanticDomain_RelatedDomains ······················ LangProject_SemanticDomainList

Conceptual model overview Page 12

6/13/2013

CmTranslation_Type ··· LangProject_TranslationTags

DsChart_Template ·· DsDiscourseData_ConstChartTempl

LexEntry_Condition ··· LexDb_AllomorphConditions

LexEntry_EntryType ··· LexDb_EntryTypes

LexPronunciation_Location ··································· LangProject_Locations

LexSense_AnthroCodes ·· LangProject_AnthroList

LexSense_DomainTypes ······································ LexDb_DomainTypes

LexSense_SemanticDomains ·································· LangProject_SemanticDomainList

LexSense_SenseType ·· LexDb_SenseTypes

LexSense_Status ·· LexDb_Status

LexSense_ThesaurusItems ···································· LexDb_Thesaurus (unused)

LexSense_UsageTypes ·· LexDb_UsageTypes

MoAffixAllomorph_MsEnvPartOfSpeech ·················· LangProject_PartsOfSpeech

MoCompoundRule_ToProdRestrict ························· MoMorphData_ProdRestrict

MoDerivAffMsa_AffixCategory ····························· LangProject_AffixCategories (unused)

MoDerivAffMsa_FromPartOfSpeech ······················· LangProject_PartsOfSpeech

MoDerivAffMsa_FromProdRestrict ························· MoMorphData_ProdRestrict

MoDerivAffMsa_ToPartOfSpeech ··························· LangProject_PartsOfSpeech

MoDerivAffMsa_ToProdRestrict ···························· MoMorphData_ProdRestrict

MoDerivStepMsa_PartOfSpeech ····························· LangProject_PartsOfSpeech

MoDerivStepMsa_ProdRestrict ······························ MoMorphData_ProdRestrict

MoForm_MorphType ·· LexDb_MorphTypes

MoInflAffMsa_AffixCategory ······························· LangProject_AffixCategories (unused)

MoInflAffMsa_FromProdRestrict ··························· MoMorphData_ProdRestrict

MoInflAffMsa_PartOfSpeech ································ LangProject_PartsOfSpeech

MoStemMsa_FromPartsOfSpeech ···························· LangProject_PartsOfSpeech

MoStemMsa_PartOfSpeech ··································· LangProject_PartsOfSpeech

MoStemMsa_ProdRestrict ···································· MoMorphData_ProdRestrict

MoUnclassifiedAffixMsa_PartOfSpeech ··················· LangProject_PartsOfSpeech

Nothing_LexRefType It just uses owned objects ··········· LexDb_References

ReversalIndexEntry_PartOfSpeech ·························· ReversalIndex_PartsOfSpeech

RnAnalysis_Status ··· LangProject_AnalysisStatus

RnEvent_Locations ··· LangProject_Locations

RnEvent_Sources ··· LangProject_People

RnEvent_TimeOfEvent ·· LangProject_TimeOfDay

RnEvent_Type ·· RnResearchNbk_EventTypes

RnEvent_Weather ·· LangProject_WeatherConditions

RnGenericRec_AnthroCodes ·································· LangProject_AnthroList

RnGenericRec_Confidence ··································· LangProject_ConfidenceLevels

RnGenericRec_PhraseTags ··································· Any possibility items

RnGenericRec_Researchers ··································· LangProject_People

RnGenericRec_Restrictions ··································· LangProject_Restrictions

RnRoledPartic_Participants ···································· LangProject_People

RnRoledPartic_Role ··· LangProject_Roles

ScrImportSource_NoteType ··································· LangProject_AnnotationDefs

ScrMarkerMapping_NoteType ································ LangProject_AnnotationDefs

ScrScriptureNote_Categories ································· Scripture_NoteCategories

StJournalText_CreatedBy ······································ LangProject_People

StJournalText_ModifiedBy ···································· LangProject_People

Text_Genres ··· LangProject_GenreList

WfiAnalysis_Category ··· LangProject_PartsOfSpeech

WordFormLookup_AnthroCodes ····························· LangProject_AnthroList

WordFormLookup_ThesaurusItems ························· LexDb_Thesaurus (unused)

Conceptual model overview Page 13

6/13/2013

2.2.2 Structured text

An StText class presents users with a field that has multiple paragraphs and can be

formatted similar to Word. StText owns a sequence of StPara which is an abstract class

that holds StyleRules which holds compressed binary information about the paragraph

style. Typically, it just uses a namedStyle property giving the name of an StStyle

associated with the paragraph. It can also hold hard-coded style information such as text

direction, line height, and indents. At this point, the only concrete subclass is StTxtPara

which contains a FieldWorks String.

ModelDocumentation.chm contains a Structured Text diagram that gives more detail. For

Scripture purposes, two subclasses of StText were added: StFootnote and StJournalText.

CmTranslation was also added to StTxtPara to hold information such as back translations.

There are currently three stylesheets in a language project that hold StStyle instances

defining paragraph or character styles.

 One is owned by Scripture_Styles and is used for Scripture.

 One is owned by LexDb_Styles and is used for the lexical database and interlinear

text.

 One is owned by LanguagProject_Styles and is used by the Data Notebook and List

Editor.

2.2.3 Language project

Each database holds one language project. The Language Project diagram in

ModelDocumentation.chm gives more details. Among other things, a language project owns

 a lexical database

 a wordform inventory

 a collection of text (interlinear text)

 a research notebook

 Scripture

 morphological data

 a collection of annotations (largely for interlinear text)

 collections of picture and media objects pointing to external files, and

 numerous possibility lists.

It also references a sequence of active writing systems for vernacular, analysis, and

pronunciations that determine the writing systems currently used to display your data.

Conceptual model overview Page 14

6/13/2013

The vernacular writing systems should always be different ways of representing the same

vernacular language, such as standard orthography, IPA, PINYIN, and Romanized.

Analysis writing systems can be any language or writing system for languages used for

information such as glossing, definitions, and sentence translations.

2.2.4 Lexical database

The lexical database holds a collection of LexEntry. These entries may be main entries,

subentries, or variants, depending on the EntryType. The Abbreviation of the

LexEntryType is the abbreviation of the minor entry when referring to the major entry

(e.g., der. of). The ReverseAbbr is the abbreviation used in the major entry to refer to the

minor entry (e.g., der.) They may or may not show up in a printed dictionary based on the

ExcludeAsHeadword flag. For subentries and variants, MainEntriesOrSenses references

one or more entries or senses. The Type integer determines whether this entry works like

a main entry (0), subentry (2), or minor entry (1).

Entries hold a sequence of senses which may be nested. The Lexical database diagram

shows the basic properties of LexEntry and LexSense plus related classes. For full details,

see the Lexical Database diagram in ModelDocumentation.chm.

Conceptual model overview Page 15

6/13/2013

2.2.5 Lexeme form and alternate forms

The Lexeme form is an owning property that holds an atomic instance of a subclass of

MoForm. Alternate forms is a sequence of subclasses of MoForm. Concrete subclasses of

MoForm are MoStemAllomorph and MoAffixAllomorph. (The MoAffixProcess has not

been implanted yet.)

MoForm has a multiUnicode Form field. This allows for multiple vernacular writing

systems such as standard orthography, IPA, PINYIN, and Romanized. It holds an

IsAbstract flag for forms. It also references a MoMorphType such as root, prefix, and

suffix. The MoMorphType contains strings that are attached before or after the citation

form or lexeme form when producing the headword. Users can change these if needed.

The SecondaryOrder determines the sort order when the form and homograph numbers

are identical.

The allomorph has different reference properties depending on whether it is a

MoAffixAllomorph or a MoStemAllomorph. More details on these classes are defined in

the Lexical Database and Morphology diagrams of ModelDocumentation.chm.

Conceptual model overview Page 16

6/13/2013

2.2.6 Categories (parts of speech)

Categories (parts of speech) are much more complex than a simple string as in an SFM

file. What would normally be a part of speech is actually a complex bundle that may

include information such as parts of speech, features, inflections, and productivity

restrictions. The PartOfSpeech is a subclass of CmPossibility and may own information

such as affix templates, affix slots, and inflection classes. The Categories (parts of speech)

diagram is a simplification of the LexDb and Morphology diagrams in
ModelDocumentation.chm.

The additional information helps to define the grammar for your language. This

information does not have to be available until it is needed. This is part of the stealth-to-

wealth design of Flex. By adding additional information, the Flex parser becomes more

accurate in predicting good morphological analyses and helps make the grammar sketch

more complete.

Conceptual model overview Page 17

6/13/2013

Since the parser uses this information, it needs to be available on the entry rather than the

sense. The entry contains information relevant to the grammar and the sense deals with

the semantics, or meaning. Multiple senses in an entry may frequently use the same

bundle of information. As a result, LexEntry owns a collection of MoMorphSynAnalysis

(MSA) in the MorphoSyntaxAnalyses property. Each sense then references the MSA that

contains the bundle it needs via the MorphoSyntaxAnalysis property (Grammatical info

in the UI). MoMorphSynAnalysis is actually an abstract class. The actual instances are

subclasses: MoStemMsa, MoUnclassifiedAffixMsa, MoInflAffMsa, and

MoDerivAffMsa. Information for each of these appears at the bottom of the entry in the

Grammatical Info. Details section(s).

For more information on morphology, see Help…Resources…Introduction to Parsing.

2.2.7 Pictures

LexSense owns a sequence of CmPicture via the Pictures property. CmPicture has a

Caption basic property and a PictureFile property which references a CmFile that locates

the external file for the picture.

When users insert a picture file, Flex adds an instance of CmFile to the Files property of

the CmFolder with a Name of Local Pictures. The CmFolder is owned in the Pictures

owning collection property of LangProject. Although not shown, users can nest

CmFolders. Currently, the original picture file is copied to

the %ALLUSERSPROFILE%\Application Data\SIL\FieldWorks\Pictures directory (should

become a user definable directory), InternalPath is set to the copied file, and OriginalPath

is set to the original file. If the file already exists, Flex appends or increments an integer

to the file name to keep it unique.

Note: %ALLUSERSPROFILE%\Application Data is c:\Documents and Settings\All

Users\Application Data on Windows XP and c:\ProgramData on Vista.

Conceptual model overview Page 18

6/13/2013

2.2.8 Pronunciations

LexEntry owns a sequence of LexPronunciation via the Pronunciations property. Each

LexPronunciation has Form, CVPattern, and Tone basic properties. It has a reference to a

CmLocation and also owns a sequence of CmMedia via the MediaFiles property. The

CmMedia references a CmFile that locates the external file for the pronunciation, which

can be a sound file or a video file.

When users insert a media file, Flex adds an instance of CmFile to the Files property of

the CmFolder with a Name of Local Media. The CmFolder is owned in the Media

owning collection property of LangProject. Although not shown, users can nest

CmFolders. Currently, the original media file is copied to

the %ALLUSERSPROFILE%\Application Data\SIL\FieldWorks\Media directory (should

become a user definable directory), InternalPath is set to the copied file, and OriginalPath

is set to the original file. If the file already exists, Flex appends or increments an integer

to the file name to keep it unique. Flex does not yet provide a UI to set or view media

files but they are imported from LinguaLinks. Users will be able to access them as soon

as the UI is available.

2.2.9 Etymology

A good model for etymology is not yet available. If users have a significant need for a

better model, they should write a proposal. At this point, Flex contains something similar

to MDF. LexEntry has an Etymology atomic owning property that owns a single instance

Conceptual model overview Page 19

6/13/2013

of LexEtymology, which has Form, Gloss, Comment, and Source basic properties.

(Source needs to be changed from Unicode to String so it contains a writing system.)

2.2.10 Example sentences

LexSense has an Examples owning sequence property holding LexExampleSentence

which has an Example multiString property that allows the vernacular example to be in

multiple writing systems. A Reference string property provides source information for the

example. LexExampleSentence owns a collection of CmTranslation via the Translations

property.

Each CmTranslation has a Type atomic reference property that refers to a CmPossibility

owned in the TranslationTags property of LangProject. This allows users to specify

whether it is a Free translation or a Literal translation (users can create new types if

desired). CmTranslation has a multiBigString Translation property that allows users to

enter translations in multiple languages and/or writing systems. This class is also used in

the Scripture model where longer translations are needed, so this is a multiBigString

instead of just multiString. The Status property is only used in the Scripture model.

2.2.11 Reversal entries

Conceptual model overview Page 20

6/13/2013

In Flex, reversal indexes are separate index objects owned by the lexical database that

hold a hierarchy of reversal entries. Each reversal index has a primary writing system.

There is normally one reversal index for a given language, regardless of how many

writing systems are used for that language. Reversal entries have a form capable of

having multiple writing systems for the language of the primary writing system. (The

language of a writing system is identified by the ICULocale string up to the first

underscore.) Senses then reference these reversal entries. Senses can be linked to reversal

entries from the Lexicon Edit view, the Bulk Edit Senses view, or the Reversal Indexes

view.

Each reversal index owns a private copy of a parts of speech list since the categories may

be different in the writing system of the index. The reversal entries can reference parts of

speech in this private list. These private parts of speech lists can be edited from the Lists

area using the Reversal Index Categories view.

2.2.12 Lexical relations & cross references

Lexical relations (sense) and cross references (entry) are defined in a possibility list

holding LexRefType instances. Each LexRefType owns a collection of LexReference

instances that define specific relations between senses and/or entries. LexReference has

Name and Comment basic properties, but we currently do not provide a way in the UI to

use these. The data is transferred during LinguaLinks transfers so the data will be

available once the UI is added. The Targets sequence reference property on

LexReference has a signature of CmObject because that is the only superclass over

LexEntry and LexSense. The UI only allows LexSense and LexEntry in this property.

Each LexRefType has a MappingType that determines how various parts of this type of

reference work. All LexReferences owned by a LexRefType are of the same mapping

type. The mapping types are defined as follows:

Conceptual model overview Page 21

6/13/2013

0 Sense collection—one name (Lexical Relation) e.g., Synonym

1 Sense pair—one name (Lexical Relation) e.g., Antonym

2 Sense pair—two names (Lexical Relation)

3 Sense tree—two names (Lexical Relation) e.g., Part/Whole

4 Sense sequence/scale—one name (Lexical Relation)

5 Entry collection—one name (Cross Reference)

6 Entry pair—one name (Cross Reference)

7 Entry pair—two names (Cross Reference)

8 Entry tree—two names (Cross Reference)

9 Entry sequence/scale—one name (Cross Reference)

10 Entry or sense collection—one name (Cross Reference or Lexical Relation)

11 Entry or sense pair—one name (Cross Reference or Lexical Relation)

12 Entry or sense pair—two names (Cross Reference or Lexical Relation)

13 Entry or sense tree—two names (Cross Reference or Lexical Relation)

14 Entry or sense sequence/scale—one name (Cross Reference or Lexical

There are five basic types of relations, and each of these types can hold senses (0–4),

entries (5–9), or combinations of senses and entries (10–14). Any reference to a sense

shows up under Lexical Relations in the sense detail view. Any reference to an entry

shows up under Cross References in the entry detail view. For sense references, the sense

number is only shown if it is not the first sense in the entry.

Set relation

A set relation (e.g., synonyms–types 0, 5, 10) points to any number of senses via the

targets property. The order can be ignored for these references. The name and

abbreviation for the relation comes from CmPossibility. When a new sense is added from

the chooser, Flex checks to see if the current sense or the chosen sense is already part of a

LexReference of this type. If not, a new LexReference is created with the current sense

and the chosen sense. If so, all linked senses for the existing one or two LexReferences

are merged together into a single LexReference that encompasses the current sense, the

chosen sense, and any senses to which they were previously linked.

Example

LexRefType: Name = Synonyms, Abbreviation = syn, MappingType = 0

LexReference_Targets: house, bungalow, cottage

House detail view: Synonyms bungalow | cottage

House dictionary view: house n. syn. bungalow, cottage

Bungalow detail view: Synonyms house | cottage

Bungalow dictionary view: bungalow n. syn. house, cottage

Cottage detail view: Synonyms house | bungalow

Cottage dictionary view: cottage n. syn. house, bungalow

Pair relation with one name

A pair relation with one name (e.g., antonyms–types 1, 6, 11) points to two senses via the

targets property. The order is ignored for these references. The name and abbreviation for

the relation comes from CmPossibility. When a new sense is added from the chooser, a

new LexReference is created with the current sense and the chosen sense.

Conceptual model overview Page 22

6/13/2013

Example

LexRefType: Name = Antonym, Abbreviation = ant, MappingType = 1

LexReference_Targets: fast, slow

Fast detail view: Antonym slow

Fast dictionary view: fast adj. ant. slow

Slow detail view: Antonym fast

Slow dictionary view: slow adj. ant. fast

Pair relation with two names

A pair relation with two names (e.g., individual-group – types 2, 7, 12) point to two

senses via the targets property. The order is significant for these references. The name

and abbreviation for the relation on the first sense come from CmPossibility. The name

and abbreviation for the relation on the second sense come from LexRefType

ReverseName and ReverseAbbreviation. When a new sense is added from the chooser, a

new LexReference is created with the current sense and the chosen sense.

Example

LexRefType: Name = Individual, Abbreviation = ind, ReverseName = Group,

ReverseAbbreviation = grp, MappingType = 2

LexReference_Targets: lion, pride

Lion detail view: Group pride

Lion dictionary view: lion n. grp. pride

Pride detail view: Individual lion

Pride dictionary view: pride n. ind. lion

Tree relation

For a tree relation (e.g., generic/specific and part/whole–types 3, 8, 13) the first target

represents the generic/whole sense and the remainder of the sequence is used for the

specific/part senses. The CmPossibility name and abbreviation specify the specific/part

labels while the reverse name and abbreviation from LexRefType are used for the

generic/whole label. The order after the first sense is ignored for these references. When a

new sense is added from the chooser:

A. The label is a normal name (specific/part) if there is a LexReference with the current

sense as the first item in the sequence. Flex appends the chosen sense to this

LexReference. Otherwise, it creates a new LexReference and adds the current sense and

then the chosen sense to this LexReference.

B. The label is a reverse name (generic/whole) if there is a LexReference with the chosen

sense as the first item in the sequence. Flex appends the current sense to this

LexReference. Otherwise, it creates a new LexReference and adds the chosen sense and

then the current sense to this LexReference.

Example

LexRefType: Name = Parts, Abbreviation = pt, ReverseName = Whole,

ReverseAbbreviation = wh, MappingType = 3

LexReference_Targets: room, walls, ceiling

Room detail view: Parts walls | ceiling

Room dictionary view: room n. pt. walls, ceiling

Conceptual model overview Page 23

6/13/2013

Walls detail view: Whole room

Walls dictionary view: walls n. wh. room

Ceiling detail view: Whole room

Ceiling dictionary view: ceiling n. wh. room

Scale relation

For a scale relation (e.g., rank–types 4, 9, 14) the senses in the scale are referenced by the

targets property. In this case, the ordering is significant. The name and abbreviation for

the relation come from CmPossibility. When a new sense is added from the chooser, Flex

appends the new sense to the current LexReference or creates a new one if none exists.

Users can right-click an item in the scale detail view and choose to move it to the right or

left via a context menu. Unlike the other relations, the current sense is displayed in the

list of senses for a scale relation.

Example

LexRefType: Name = Calendar, Abbreviation = cal, MappingType = 4

LexReference_Targets: Monday, Tuesday, Wednesday

Monday detail view: Calendar Monday | Tuesday | Wednesday

Monday dictionary view: Monday n. cal. Monday, Tuesday, Wednesday

Tuesday detail view: Calendar Monday | Tuesday | Wednesday

Tuesday dictionary view: Tuesday n. cal. Monday, Tuesday, Wednesday

Wednesday detail view: Calendar Monday | Tuesday | Wednesday

Wednesday dictionary view: Wednesday n. cal. Monday, Tuesday, Wednesday

Because all the relations for a particular type are owned by the LexRefType, if one of

these types is deleted from the Lexical Relation Type list, all the relations associated with

it are also deleted.

In Flex, users never have to worry about adding lexical relations to both senses or entries.

Adding one link automatically adds the corresponding link from the other reference.

Conceptual model overview Page 24

6/13/2013

2.2.13 Wordform inventory

The WordformInventory owns a collection of WfiWordform, representing all of the

wordforms in interlinear texts. WfiWordform has a multiUnicode Form property to allow

different writing systems for the same language. WfiWordform owns a collection of

WfiAnalysis, each one representing a different morphological analysis of the wordform.

The WfiAnalysis refers to a PartOfSpeech via the Category property. It owns a collection

of WfiGloss holding word glosses in any number of languages. It also owns a sequence

of WfiMorphBundle, one for each morpheme in the wordform. The WfiMorphBundle

ties this morpheme to

 an entry—actually the MoForm of an entry, usually in its LexemeForm property

 an MSA owned by the entry, and

 a sense owned by the entry that refers to the MSA.

The WfiMorphBundle also has a Form basic property that can hold the morpheme string

until it is analyzed to the references.

When users edit text in an interlinear text and move out of the Basline tab, the text is

broken into wordforms. Any new wordforms are added to the wordform inventory. If the

baseline text breaks in the wrong places, users can override the standard Unicode

wordforming characters using WordFormingCharOverrides.xml located in their FieldWorks

directory. This file currently affects all language projects on the computer.

Analyses are created as users work in the Interlinearize tab of an interlinear text. In this

process, instances of CmBaseAnnotation (a subclass of the abstract CmAnnotation) are

connected to the WfiWordform, WfiAnalysis, or WfiGloss, depending on the level of

analysis. During this process, users may also add a WfiGloss, PartOfSpeech, or

Conceptual model overview Page 25

6/13/2013

WfiMorphBundle objects to the analysis. Also, CmAgentEvaluations are created

indicating that a given wordform and/or analysis has been approved by the user.

Analyses can also be created by the parser when users choose Parser…Start Parser from

the Flex menu. The parser may also create WFiMorphBundles and fill in the Morph and

Msa properties, but it will never fill in the Sense property. The parser does not fill in the

Category or Meanings properties of the WfiAnalysis. The parser also creates

CmAgentEvaluations identifying analyses that it makes.

Although WfiWordform has a multiUnicode Form property for holding forms in different

writing systems of the same language, Flex is not yet prepared to interlinearize baseline

text in more than one writing system. The missing piece is a way for users to match a

wordform in a second writing system with the wordform that may already exist in the

primary writing system, but is missing a form in the second writing system.

2.2.14 Interlinear text

Interlinear pictures such as the FieldWorks Interlinear Text Instance Diagram print better

if you change the page to legal size. These diagrams use a non-UML format where

owning properties are indicated with solid lines and reference properties are indicated

with dotted lines. These diagrams are instance diagrams rather than conceptual model

diagrams. They show a small example of an interlinear text illustrating two wordforms in

the wordform inventory and how these are tied together between the text, wordform

inventory, and lexical database. For details on the conceptual model, refer to Annotations,

CmAgent, Interlinear Texts, Lexical Database, Morphology, Structured Text, and

Wordform Inventory diagrams in ModelDocumentation.chm.

Conceptual model overview Page 26

6/13/2013

Conceptual model overview Page 27

6/13/2013

An interlinear text is an instance of Text, which is a subclass of CmMajorObject. The

Contents owning property holds an StText, which owns a sequence of StTxtPara. The

baseline tab of the interlinear text is simply looking at the text from the StTxtPara. When

users move out of the baseline tab, the text is broken into wordforms, creating new

wordforms in the wordform inventory as needed. Flex also provides an option to show

ScrSections, thus allowing a user to interlinearize the StTexts directly from Scripture.

When users go to the Interlinearize tab, Flex

 uses existing CmBaseAnnotations for the wordforms in the text, or

 creates some in-memory CmBaseAnnotations for ones not yet user approved.

When users move the focus box, a CmBaseAnnotation will be created that represents the

instance of that wordform in the text. This annotation points to the StTxtPara and holds

beginning and ending offsets of the wordform in the paragraph string. It points to a

“Wordform In Context” annotation type. The InstanceOf reference property is set to the

WfiWordform initially. If users chose an analysis before moving the focus box,

InstanceOf is set to the WfiAnalysis if there is no word gloss, otherwise it is set to the

chosen WfiGloss.

When users edit the morph breaks, they create a new WfiAnalysis and set of

WfiMorphBundles associated with these morph breaks. When users fill in the

information for the entry, they set the properties on the WfiMorphBundle which ties the

analysis to a sense, MSA, and MoForm (either LexemeForm or AlternateForms of the

endty) in the lexicon.

When users approve the focus box, they also create a CmAgentEvaluation for the default

user for that WfiAnalysis if it does not already exist.

The interlinear bundle inset on the upper right demonstrates that interlinear text in Flex is

not a simple text string. It is a view of strings that are picked up throughout the

conceptual model. The number for each string indicates where that string comes from in

the instance diagram. The second (Morph) line comes from the WfiMorphBundle until

the word is analyzed to a MoForm in a lexical entry, then it comes from the LexemeForm

or an AlternateForm. The third (Lexical Entry) line shows homograph numbers and affix

markers along with the LexemeForm.

Conceptual model overview Page 28

6/13/2013

Conceptual model overview Page 29

6/13/2013

This FieldWorks Interlinear Annotation Instance Diagram illustrates more of the

“Wordform In Context” and “Punctuation In Context” CmBaseAnnotations that are

created as users analyze the text.

When moving to the Interlinearize tab, Flex breaks the baseline text into segments based

on punctuation. It will automatically create a new segment for every period, question

mark, exclamation point, or section sign (§). This may not be the place users desire to

break segments, but at this point there is no other choice. For each segment, a

CmBaseAnnotation is created with the AnnotationType pointing to the “Text Segment”

CmAnnotationDefn.

If users add free translations, literal translations, or notes, a CmIndirectAnnotation is

created with AnnotationType set to the “Free Translation”, “Literal Translation”, or

“Note” CmAnnotationDefn. The translations and notes reference their segment

CmBaseAnnotation using the AppliesTo reference property. The actual translation or

note is held in the Comment property. This allows notes and translations in any number

of languages and writing systems. For each segment, FieldWorks allows one free

translation, one literal translation, and any number of notes.

There is a potentially serious problem in this version because of the automatic segment

breaks that are automatically set up whenever users edit the baseline text. Everything

works fine if users simply modify text within a segment, but as soon as they add or

remove segment punctuation, reorder sentences, or combine paragraphs, translations and

notes will likely be misaligned or lost. Flex tries to maintain these annotations, but it does

not always work.

Example: Starting with text in one paragraph

A B.

translation for A B

C D.

translation for C D

E F.

translation for E F

G H.

translation for G H

Example: Trying to merge the first two sentences by removing the period after B

A B C D.

translation for A B translation for C D

E F.

translation for E F

G H.

translation for G H

This probably does what you would expect. However, if you put the period back in the

baseline, you will not return to your original state because the free translations have now

been merged. The next example demonstrates this.

Example: From original state, if users break first sentence into two by adding a

period after A

Conceptual model overview Page 30

6/13/2013

A.

translation for A B translation for C D

B.

<no translation>

C D.

translation for E F

E F.

translation for G H

G H.

Again, the results are what you would expect. You’ll need to cut the B portion of the free

translation from A’s translation and paste it into B’s translation..

Example: From original, if users reorder the first two sentences

C D.

translation for A B

A B.

E F.

translation for E F

G H.

translation for G H

When reordering sentences like this, Flex fails. The translation for A B is incorrectly

moved to CD and the original translation for C D is lost.

Example: From original, if users start a new paragraph after C D.

A B.

translation for A B

C D.

translation for C D

E F.

translation for E F

G H.

translation for G H

In this case everything worked correctly.

Example: If users merge the two paragraphs

A B.

translation for A B

C D.

translation for C D

E F.

translation for E F

G H.

translation for G H

Again, this works as expected.

Conceptual model overview Page 31

6/13/2013

Changes to translations are only incorrect for the current paragraph, so users can mitigate

against this problem by using short paragraphs.

FieldWorks 5.0 introduced moderate capabilities for interlinearizing baseline texts in

more than one writing system for their vernacular language (e.g., IPA and standard

orthography). It will work well if you follow carefully defined procedures. If you fail to

follow these, you can end up with a mess that will be hard to fix, at least until some

additional capabilities are added in future versions. See Flex tips.doc—13 Interlinearizing

with multiple scripts for a technical discussion, or the help files for practical instructions.

2.2.15 Scripture

LangProject owns a single instance of Scripture. Scripture owns a sequence of ScrBook.

Each book references a ScrBookRef through the BookId reference property. Each book

owns a single StText in the Title owning property. The body of the book is a sequence of

ScrSection owned in the Sections sequence property. Each section owns a single StText

in the Heading property and a single StText in the Content property. StText owns a

sequence of StTxtPara paragraphs, each with style and a content bigString with the text

of the paragraph. ScrBook also owns a sequence of StFootnote, a subclass of StText.

The Translation Editor depends heavily on styles. Each StTxtPara has a style for

paragraph formatting and various character styles are embedded in the paragraph string to

hold items such as chapter numbers and verse numbers.

See the Scripture diagram in ModelDocumentation.chm for more detail on Scripture classes.

Conceptual model overview Page 32

6/13/2013

2.2.16 Data Notebook

The data notebook is implemented as RnResearchNbk, which owns a collection of

Records. RnGenericRec is an abstract class that has RnAnalysis and RnEvent as concrete

subclasses. Records have various owning properties that hold StText objects, plus

numerous reference properties to possibility lists such as the People List and OCM Codes.

2.2.17 Writing Systems

Unlike most other objects, LgWritingSystem instances are unowned in the database
2
. The

LangProject has several reference properties that determine the writing systems users see

in various views. VernWss is a reference collection that identifies the vernacular writing

systems that show up in the FieldWorks Project Properties Dialog…Writing

System…Vernacular Writing Systems window. Of these writing systems, checked ones

are indicated by the CurVernWss reference sequence property. The order of checked

writing systems is important. For multistring vernacular properties, such as CitationForm,

a line for each current writing system is displayed along with the Abbr of the writing

system. For other vernacular properties, the writing system defaults to the first current

2
 Originally the plan was to have multiple language projects in one database and the LgWritingSystems

were used by all projects in the database. This plan was abandoned for various reasons.

Conceptual model overview Page 33

6/13/2013

writing system. Vernacular writing systems should always be writing systems of the same

language (e.g., standard orthography, IPA, Pinyin, and Romanized).

Analysis writing systems work similarly to vernacular writing systems. AnalysisWss is a

reference collection that holds the writing systems in the Analysis Writing Systems

window. CurAnalysisWss is a reference sequence for the writing systems that are

checked. These writing systems determine the way analysis properties are shown in

various views. Analysis writing systems can be any language or writing system within a

language.

CurPronunWss is a reference sequence that determines the writing system(s) shown in

the pronunciation field of lexical entries. It is changed by right-clicking on this field in a

detail view and choosing the Writing System. Pronunciation writing systems should

always be writing systems of the same language (e.g., standard orthography, IPA, Pinyin,

and Romanized.)

LgWritingSystem holds most of the properties selected in the Writing System

Properties…Name and Attribute tab. ICULocale is the key identification code of each

writing system that should always be unique in each database. After clicking

“Advanced,” this writing system code can be seen in the Writing System

Properties…Name tab. It consists of a language code with an optional region code and

variant code separated by underscores. (The format is a result of ICU specifications.)

Examples

 en English standard orthography

 en__IPA English using an IPA (phonetic) writing system

 en_US_IPA English as spoken in the US using an IPA writing system

 atd Ata Monobo standard orthography

 atd__EMC Ata Monobo phonemic writing system

In several places, FieldWorks considers any writing system with the same code up to the

first underscore as writing systems of the same language. The language portion of the

code needs to use ISO-639-1 two-letter codes when defined in this standard. Otherwise

use ISO-639-3 three-letter codes. If the language is not identified in ISO-639-3, Flex adds

an “x” to the beginning of the first 3 letters of the language name to provide a four-letter

code. In general, users should not specify a regional code unless it is required for some

reason. For example, FieldWorks has many English strings for possibility lists that are

encoded with “en”. If users try to use en_US for their default analysis writing system, it

will be considered a different writing system from the English that is already recorded in

the system. They can use the region portion to identify a dialectal variant or a region of

the area where they work where this distinction is needed. (More development is needed

to handle dialects adequately.) The variant can be used for alternate writing systems for

the language such as IPA (phonetic), EMC (phonemic), PIN (Pinyin), or ROM

(Romanized) forms.

A writing system has a default font for normal use and a default font for headings. Each

has a font variation property used by Graphite fonts to record various font features

selected by the user.

Conceptual model overview Page 34

6/13/2013

A writing system records the system keyboard in the Locale property. Users can

optionally include the name of a Keyman keyboard.

 LegacyMapping is a property for the default SIL Encoding Converter to convert

legacy 8-bit data to Unicode. If missing, it is assumed the input file is in Unicode

UTF-8. (TE always uses this for import. Flex allows users to override this.)

 The RightToLeft flag is set to 1 for Arabic or other writing systems that are rendered

right-to-left.

 The LastModified property keeps track of the date the language definition XML file

(in your FieldWorks languages directory) was last modified. It stores this time in

GMT. If the language definition file has a different date, FieldWorks will load its

information into the LgWritingSystem when that writing system is used. For more

details, see Writing systems in FieldWorks section of ICU and writing systems.doc.

Writing systems can have one or more LgCollation instances that define collations to use

when sorting or searching data. At present the UI only supports one LgCollation. For

more details, go to the Collation setup section of of ICU and writing systems.doc.

Note: There may be more LgWritingSystem instances in the database than show up in the

FieldWorks Project Properties Dialog…Writing System tab. FieldWorks does not

currently provide a way in the UI to delete an LgWritingSystem from the database. For

ways to do this, see Removing a writing system in FieldWorks XML model.doc and

InstallLanguage section of ICU and writing systems.doc.

