
6/13/2013 1

FXT export options
Ken Zook

May 18, 2009

Contents
1 FXT introduction ... 1

2 FDO introduction ... 1
3 Basic FXT files .. 2
4 FXT elements .. 4
5 Running FXT from the command line .. 6
6 Adding FXT export options to Flex .. 7

7 Examples of FXT exports .. 8

7.1 Dumping parts of speech as a tab-delimited file .. 8
7.2 Dumping XML information from the wordform inventory 9

7.3 Adding a custom field to mdf.xml or RootBasedMDF.xml 10

7.4 Adding guids to mdf.xml ... 10

1 FXT introduction
In addition to various export options in Export options in Flex.doc, Flex provides a program

that allows more sophisticated users or consultants to design custom options for exporting

information from the FieldWorks database to XML, SFM, or plain text files.

You can run these custom exports outside of Flex or add them to the standard Flex export

dialog.

These custom exports are defined by a FieldWorks XML template (FXT) XML file that

instructs the FXT.exe (or FXT.dll) program what to extract from the database and how to

format them in the output. FxtReference.doc is the initial documentation for this format. It

is a good starting point to learn about FXT, although it is in a fairly early stage of

development and does not cover all aspects of the program.

Note: In order to support the possibility of using the Firebird database engine in addition

to Micrsoft SQL Server, and due to limited length of names in Firebird, some class,

property, and procedure names were shortened in FieldWorks 5.4 compared to earlier

versions. The spreadsheet, Model name changes.xls, lists the changes that were made. If

you had custom FXT files for older versions you may need to make a few of these name

changes for it to continue to work in FieldWorks 5.4 and later.

Note: It’s best not to modify one of the installed template files. Instead, make a copy and

work on the copy. The reason is that the installer will not uninstall a file that has been

modified after it was installed. Then when a new installation is made, depending on dates,

the new file may not replace the file you modified. This can lead to crashes related to

mismatched data. Also, when you upgrade to a new version, you may need to adjust your

custom FXT file so that it will be consistent with the new version.

2 FDO introduction
FXT is written on top of the FieldWorks Data Objects (FDO) layer, an object-oriented

business layer that makes access to the database more intuitive. FDO is written in C# and

Fxt export options Page 2

6/13/2013

can be accessed from any program that can work with .NET 2.0 classes. The Translation

Editor and Flex make heavy use of FDO internally. The freely available IronPython

implementation of Python can also use this method to access the database (see Python

database access.doc).

FDO provides generated classes for every class in the FieldWorks conceptual model, and

generated methods on those classes for every property defined in the FieldWorks

conceptual model. In addition, many hand-written methods on common classes provide

additional functionality.

An introduction to FDO is given in fdoHelp.doc. The current programmer documentation

for FDO is in FDO.chm, which was generated from the C# source code. FDO is discussed

in more detail in Python database access.doc.

3 Basic FXT files
This section demonstrates minimal FXT files for exporting data in SFM, XML, and plain

text formats.

Here is an example of a minimal FXT file you can use to dump the wordforms from the

database to a standard format file:

<?xml version="1.0" encoding="UTF-8"?>
<template format="sf">
 <class name="LangProject">
 <group objProperty="WordformInventoryOA">
 <objVector objProperty="WordformsOC"/>
 </group>
 </class>
 <class name="WfiWordform">
 <multilingualStringElement name="w" simpleProperty="Form"/>
 </class>
</template>

An FXT file contains one template element with an optional format argument. When

format is set to “sf”, the output will normally be in SFM as opposed to XML. Class

elements are added within the template element. The first class element should be

LangProject since that is the root owner of a FieldWorks project. A group element

provides a way to change the current object while within the group. In this case it

switches from using the language project to using the wordform inventory inside the

WordformInventoryOA property. In FDO, owning and reference properties are suffixed

to indicate the type of property:

 -OA owning atomic

 -OC owning collection

 -OS owning sequence

 -RA reference atomic

 -RC reference collection

 -RS reference sequence

WordformInventory is an atomic owning property that returns the WordformInventory.

In that object, FW shows the object vector “Wordforms” which is an owning collection.

This returns a collection of WfiWordforms.

The WfiWordform class element defines how FW should export wordforms. In this case,

you export all writing systems of the Form property, using “\w” as the SFM marker.

Fxt export options Page 3

6/13/2013

Here is an example of the output from this template file when exported via FXT:

\wKal nihimbilira
\wKal tihindoksa
\wKal hiŋgabira
\wKal biliya
\wKalIPA biliya

FXT exports do not provide any sort or filter options. It exports all items in a given

property, unless limited by a count argument. For sequences, the order will follow the

sequence order. For collections, the order is random. Since the Wordforms property is a

collection, the exported wordforms are not sorted. FXT output is UTF-8, using NFC

normalization by default. An optional attribute for “template” allows NFD export, when

desired (e.g., normalization="NFD"). When exporting strings, FXT returns the text

portion of the string without any indication of embedded styles or writing systems.

Since the template had multilingualStringElement, FXT appended the writing system

abbreviation to the \w marker. In the last wordform the database had two strings: one in

Kalaba and one in Kalaba IPA. These were both exported, but with different markers.

By removing the format attribute in the template element, FXT defaults to an XML

output. Here is the same table with this change:

<?xml version="1.0" encoding="UTF-8"?>
<template>
 <class name="LangProject">
 <group objProperty="WordformInventoryOA">
 <objVector objProperty="WordformsOC"/>
 </group>
 </class>
 <class name="WfiWordform">
 <multilingualStringElement name="w" simpleProperty="Form"/>
 </class>
</template>

This is the output from this FXT file:

<?xml version="1.0" encoding="UTF-8"?>
<w ws="Kal">nihimbilira</w>
<w ws="Kal">tihindoksa</w>
<w ws="Kal">hiŋgabira</w>
<w ws="Kal">biliya</w>
<w ws="KalIPA">biliya</w>

In this case, the element name is “w” and it includes a “ws” attribute identifying the

writing system of the string.

An FXT file can also put out explicit text surrounding the information dumped from the

database:

<?xml version="1.0" encoding="UTF-8"?>
<template format="plain">
 <class name="LangProject">
 <group objProperty="WordformInventoryOA">
 <objVector objProperty="WordformsOC"/>
 </group>
 </class>
 <class name="WfiWordform">
 <string simpleProperty="Form" ws="vernacular"/>
 <newLine/>
 </class>
</template>

Fxt export options Page 4

6/13/2013

In this case, instead of using multilingualStringElement, the template has the “string”

element which takes a “simpleProperty” attribute giving the property name, and a “ws”

attribute identifying the first vernacular writing system.

The “plain” format argument in the template prevents FXT from dumping the XML

header line. The “newLine” element inserts a CR-LF following each wordform. FXT also

provides “tab”, “space”, and “text” elements that can insert a tab, space, or the specified

text at the desired location.

This is the output from this FXT file:

nihimbilira
tihindoksa
hiŋgabira
biliya

Since this example requested the vernacular writing system, it did not give the IPA form

of “biliya”.

4 FXT elements
This table summarizes valid elements in an FXT file.

Element Required Attrs Optional

Attrs

Description

attribute simpleProperty name, value,

optional,

before, after

Adds a property as an XML attribute value.

SimpleProperty specifies the property of the

object. Name is the attribute name. If missing,

uses the property name as the name.

attributeIndirect target,

simpleProperty

name, value,

optional,

before, after

Make an attribute that has a GUID, hvo, or other

simple property of a referenced or owned atomic

object.

booleanElement name,

simpleProperty

optional,

writeAsTrait

Dumps a Boolean using the specified format.

call name flags Subclasses can use this to call a superclass for

generic processing. Name is the name of the

superclass. Flags is a comma-separated list of

flags that will cause an element to hide if a

hideFlag element matches one of the flags.

comment Anything enclosed in a comment element is

ignored.

customMultilingualStringElement name field, custom,

ws = {all, all

analysis, all

vernacular,

every}

Allows export of custom multilingual properties.

Name is used for the xml element or SFM

marker. Field is the internal name of the custom

field. Custom is the user name of the custom

field. Must specify either field or custom. Ws is

the writing system(s) to use. Defaults to “all”.

“every” includes all writing systems regardless

of checks. Other options use checked writing

systems.

customStringElement name field, custom Allows export of custom properties. Name is

used for the xml element or SFM marker. Field

is the internal name of the custom field. Custom

is the user name of the custom field. Must

specify either field or custom.

dateAttribute name, format, Dumps a date using the specified format. Name

Fxt export options Page 5

6/13/2013

property is used for the xml element or SFM marker.

Property specifies the date property.

element name hideFlag Dumps nested elements using an outside xml or

SFM marker specified by name. If hideFlag

matches one of the flags fed in from a call

element, it skips this property.

FxtDocumentDescription dataLabel,

formatLabel,

defaultExtension,

filter

 Causes the FXT file to show up in the Flex

File…Export Lexicon dialog, using the attributes

and contents to fill in the dialogs.

generateCustom class fieldType Dumps information from a custom field: class is

LexEntry or LexSense. fieldType is mlstring or

simplestring.

group objProperty preload Repeats everything in the group for each object

in objProperty. Preload gives an FDO method

that preloads information into the cache to speed

up the dump process. If the preload value is not

null, it assumes the required data is already in the

cache, so does not load again.

if class, field,

intequals

Includes the element contents if the integer

property equals the value specified in intequals.

If class is missing, assumes the field is on the

current object. Field is a sequence of property

names, separated by slash, leading to the integer

property (e.g., EntryType/Type gets the

EntryType object on the entry, and then gets the

Type property from the LexEntryType).

ifnot class, field,

intequals

Includes the element contents if the integer

property does not equal the value specified in

intequals. If class is missing, assumes the field is

on the current object. Field is a sequence of

property names, separated by slash, leading to

the integer property (e.g., EntryType/Type gets

the EntryType object on the entry, and then gets

the Type property from the LexEntryType).

multilingualStringElement name,

simpleProperty

ws = {all, all

analysis, all

vernacular}

Dumps the multilingual string(s). Uses name for

the xml element or SFM marker. SimpleProperty

specifies the property of the object. Ws defaults

to all.

newLine Inserts a CR-LF in the output file

numberElement name,

simpleProperty

ifnotequal,

ifless,

ifgreater

Dumps a number. Uses name for the xml

element or SFM marker. SimpleProperty

specifies the property of the object. Can use

Ifnotequal, ifless, and ifgreater to control when

the number gets dumped.

objAtomic objProperty Dumps the object inside an owning or reference

atomic property specified by objProperty.

objVector objProperty itemLabel,

virtualclass,

count

Dumps the objects in the owning vector

specified by objProperty. Virtualclass identifies

the virtual class for objects in this property. Uses

ItemLabel for the xml element or SFM marker

(defaults to “object”). If you specify count, it

only dumps that number of objects.

progress progressIncre Updates a progress bar

Fxt export options Page 6

6/13/2013

ment

refAtomic simpleProperty Use objAtomic instead of this.

refObjVector field ordered,

itemLabel,

virtual = {t, f,

true, false, y,

n, yes, no},

itemProperty,

itemWsProp,

classtag

Dumps the objects from the specified field. Is

only supported for sf output. Uses ItemLabel for

the xml element or SFM marker (defaults to

“subobject”). If virtual is true, it looks for a

virtual field with the specified field name.

Displays the ItemProperty name for the

referenced objects (defaults to “ShortName”).

ItemWsProp can specify a property that holds the

writing system to use in the label. If you give

classtag, it is appended to the current class name

with a hyphen. This combined class name is then

used in the FXT file to display this class. If

ordered = “true”, includes the ord value as an

attribute in the output.

refVector field ordered,

itemLabel,

virtual = {t, f,

true, false, y,

n, yes, no},

itemProperty,

itemWsProp

Dumps the objects from the specified field. Uses

ItemLabel for the xml element or SFM marker

(defaults to “subobject”). If virtual is true, it

looks for a virtual field with the specified field

name. Displays the ItemProperty name for the

referenced objects (defaults to “ShortName”).

ItemWsProp can specify a property that holds the

writing system to use in the label. If ordered =

“true”, includes the ord value as an attribute in

the output.

space Inserts a space in the output file.

string simpleProperty before, after,

ws =

{analysis,

vernacular}

Dumps the simpleProperty as a string. If it is a

multilingual property, requires ws to choose the

correct alternative. Includes the before and after

values before and after the property value.

stringElement name writeAsField,

wrappingEle

mentName,

internalEleme

ntName,

before, after

Dumps a string.

tab Inserts a tab in the output file.

template format =

{xml, sf,

plain}, type,

datatype, xslt

The top level element in an FXT file. xslt causes

the specified transform(s) to be run on the

exported file.

text Inserts the contents in the output file.

xmlstring simpleProperty ws =

{analysis,

vernacular}

Dumps the simpleProperty as a string. If it is a

multilingual property, requires ws to choose the

correct alternative

anything else Inserts anything else in the file as a literal

element in the output file.

5 Running FXT from the command line
You can run FXT files external to FieldWorks programs using the following syntax in a

DOS box:

fxt databaseName fxtFile outputFile

Fxt export options Page 7

6/13/2013

FXT.exe is in the c:\Program Files\SIL\FieldWorks directory, so it works best to open a DOS

box on this directory when using this program:

fxt "Sena 3" wordforms.xml wf.sfm

This example uses the wordforms.xml FXT template file on the Sena 3 database with the

exported information going to wf.sfm.

6 Adding FXT export options to Flex
FXT files can also be run from within Flex. To do this, place the FXT file in c:\Program

Files\SIL\FieldWorks\Language Explorer\Export Templates and use an .xml extension. (This is

intended for lexicon exports, but for now you can put anything else in there to have it

show up automatically in the UI.)

The FXT file also needs a FxtDocumentDescription element inside the template element.

This element has the following arguments:

 dataLabel: The value shows up in the Data column of the Export dialog.

 formatLabel: The value shows up in the Format column of the Export dialog.

 defaultExtension: The value gives the default extension of the output file in the

“Save as type” combo in the “Export to…” dialog.

 filter: The value gives the options for the “Save as type” combo in the “Export to…”

dialog. Each part has the name that is displayed in the dialog and the file filter

designation for that name.

The body of the element is text that appears in the “About the selected export method”

window in the Export dialog.

Here is an example from the mdf.xml file:

<FxtDocumentDescription dataLabel="Lexicon" formatLabel="MDF

Standard Format" defaultExtension="db" filter="Standard Format files

(*.db)|*.db|All files (*.*)|*.*">

Export using the Multi-Dictionary Formatter standard. This can be

imported into Lexique Pro for publishing dictionaries, either on the

Web or in print. (Note the exported file actually includes writing

system designators as part of the SFM code, so it is not pure MDF.)

</FxtDocumentDescription>

When a user chooses File…Export Lexicon from Flex, the program

 looks for all .xml files in c:\Program Files\SIL\FieldWorks\Language Explorer\Export

Templates with FxtDocumentDescription elements, and

 lists those in the dialog as options for the user to select.

The FXT file is not limited to exporting dictionaries, but can export whatever you want.

If the XML file has invalid syntax, it will fail to show up in the Export dialog. A quick

way to check the syntax is to open the XML file in Internet Explorer. If there are any

errors, IE usually gives a helpful error message near the end explaining the problem.

Users may want to add additional XSLT processing to a file dumped from FXT. For

example, they may want to dump the data as XML and then apply a transform to convert

that to SFM, RTF, or some other format by adding the xslt attribute to the template

element. The value is an ordered list of *.xsl file names. After dumping the file using FXT,

Flex runs the transforms to produce the final output.

Fxt export options Page 8

6/13/2013

7 Examples of FXT exports
One of the best ways to learn to use FXT is to look at existing examples installed with

FieldWorks. One source of these files is in c:\Program Files\SIL\FieldWorks\Language

Explorer\Export Templates. These show up in the File…Export Lexicon dialog. Another

source is c:\Program Files\SIL\FieldWorks\Language Explorer\Configuration\Grammar\FXTs.

The grammar sketch uses these files and they are also part of the parser. The ZEdit

Tools…Find In Files menu option provides a convenient way to search all files under

these directories for examples of a particular element to investigate.

When developing an FXT dump, if you use the File…Export Lexicon dialog in Flex, you

may encounter an error. You will get a rather useless “An error occurred while exporting

your data. This is probably a bug in the FieldWorks code” error message. If you call FXT

from the command line, you usually get a much more useful error message that will help

you identify the problem. This error message also occurs if the output file is locked for

some reason (such as if it is open in Excel, or if a large file is open in ZEdit).

7.1 Dumping parts of speech as a tab-delimited file

Here is an FXT file you can use from the File…Export Lexicon dialog. It dumps the

abbreviation and names of the Category (Parts of Speech) list in a tab-delimited format

that you can import into Excel:

<?xml version="1.0" encoding="UTF-8"?>
<template format="plain">
 <FxtDocumentDescription dataLabel="Categories (Parts of Speech)" formatLabel="Tab-delimited"
defaultExtension="txt" filter="Tab-delimited files (*.txt)|*.txt|All files (*.*)|*.*">Export the Category (Parts of
Speech) list to a tab-delimited file.</FxtDocumentDescription>

 <class name="LangProject">
 <group objProperty="PartsOfSpeechOA">
 <call name="CmPossibilityList"/>
 <newLine/>
 </group>
 </class>

 <class name="CmPossibilityList">
 <string simpleProperty="Name" ws="analysis"/><newLine/>
 <text>Abbr.</text><tab/><text>Name</text><newLine/>
 <objVector objProperty="PossibilitiesOS"/>
 </class>

 <class name="CmPossibility">
 <string simpleProperty="Abbreviation" ws="analysis"/>
 <tab/>
 <string simpleProperty="Name" ws="analysis"/>
 <newLine/>
 <objVector objProperty="SubPossibilitiesOS"/>
 </class>

 <class name="PartOfSpeech">
 <call name="CmPossibility"/>
 </class>

</template>

This obtains the parts of speech list from the PartsOfSpeech atomic owning property on

LangProject, and then calls the CmPossibilityList class to process the list. This class puts

Fxt export options Page 9

6/13/2013

out some header information, then dumps the Possibilities owning sequence. The objects

at this level are PartOfSpeech classes, but since the properties to display are in

CmPossibility, and may be common to other classes, call this superclass to do the work.

The CmPossibility class formats the abbreviation and name, and then dumps all

subpossibilities.

Here is a small example of the output of this FXT dump

Parts Of Speech
Abbr. Name
adjunct adjunct
art article
def definite article
indef indefinite article
disc disc
interj interjection

7.2 Dumping XML information from the wordform inventory

Here is an FXT file you can use from the File…Export Lexicon dialog to dump some of

the information from the wordform inventory in an XML format:

<?xml version="1.0" encoding="UTF-8"?>
<template>
 <FxtDocumentDescription dataLabel="Wordforms" formatLabel="XML" defaultExtension="xml"
filter="XML files (*.xml)|*.xml|All files (*.*)|*.*">
 Export the wordforms and associated information to an XML file.
 </FxtDocumentDescription>

 <class name="LangProject">
 <group objProperty="WordformInventoryOA">
 <objVector objProperty="WordformsOC"/>
 </group>
 </class>

 <class name="WfiWordform">
 <element name="wf">
 <attribute name="UserCount" simpleProperty="UserCount"/>
 <attribute name="ParserCount" simpleProperty="ParserCount"/>
 <newLine/>
 <element name="form">
 <string simpleProperty="Form" ws="vernacular"/>
 </element>
 <newLine/>
 <objVector objProperty="AnalysesOC"/>
 </element>
 <newLine/>
 </class>

 <class name="WfiAnalysis">
 <element name="wa">
 <objVector objProperty="MeaningsOC"/>
 <objAtomic objProperty="CategoryRA"/>
 </element>
 <newLine/>
 </class>

 <class name="WfiGloss">
 <element name = "gl">
 <string simpleProperty="Form" ws="analysis"/>
 </element>
 </class>

Fxt export options Page 10

6/13/2013

 <class name="PartOfSpeech">
 <element name="pos">
 <string simpleProperty="Name" ws="analysis"/>
 </element>
 </class>

</template>

Without the newline elements, the output is scrunched into one big paragraph. This is

hard to read in normal text editors. The UserCount and ParserCount properties are virtual

properties. They work fine in this context, although they make the export much slower. It

exports these properties as attributes on the wf element. The remaining objects are

dumped as contents of appropriate elements.

Here is a small example of the output of this FXT dump:

<?xml version="1.0" encoding="UTF-8"?>
<wf UserCount='1' ParserCount='1'>
<form>nihimbilira</form>
<wa><gl>I see</gl><gl>I perceive</gl><gl>I understand</gl><pos>verb</pos></wa>
<wa></wa>
</wf>
<wf UserCount='0' ParserCount='1'>
<form>tihindoksa</form>
<wa></wa>
</wf>
<wf UserCount='1' ParserCount='4'>
<form>pus</form>
<wa></wa>
<wa><gl>green</gl><pos>modifier</pos></wa>
<wa></wa>
<wa></wa>
</wf>

7.3 Adding a custom field to mdf.xml or RootBasedMDF.xml

You may add a custom Plural string field using the first vernacular writing system to

LexEntry and want to include that in your MDF export. You can do this easily by adding

the following line inside the LexEntry class element:

<customStringElement name="pl" custom="plural"/>

This exports the plural forms with a \pl SFM code.

7.4 Adding guids to mdf.xml

In some cases you may want to export the globally unique identifier (GUID) FieldWorks

uses to identify each object (e.g., entry and sense). You can do this in a copy of mdf.xml

by adding a new element to extract a Guid field from each object of interest. You can do

this easily by adding the following line inside the LexEntry and LexSense class elements:

<class name="LexEntry">
 <element name="lx" progressIncrement="true">
 <string simpleProperty="LexemeFormWithAffixType"/>
 </element>
 <element name="gde">
 <string simpleProperty="Guid"/>
 </element>

<class name="LexSense">
 <element name="sn">

Fxt export options Page 11

6/13/2013

 <string simpleProperty="SenseNumber"/>
 </element>
 <element name="gds">
 <string simpleProperty="Guid"/>
 </element>

The gde element will export a \gde field containing the Guid for each entry. The gds

element will export a \gds field containing the Guid for each sense.

