
6/13/2013 1

FieldWorks Localization
Ken Zook

October 28, 2008

Contents
1 Introduction ... 1

2 Localizing the User Interface .. 1
2.1 Overview .. 1
2.2 What does a developer do?... 2

2.2.1 Creating a POT Translation file .. 2
2.2.2 Integrating translations into the build process .. 2

2.2.3 Upgrading a user .po file to a new version ... 3

2.3 What does a translator do? ... 3
2.3.1 Initial setup.. 3

2.3.2 Using poEdit ... 4

2.3.3 Merging an updated POT file ... 5
2.3.4 Translation memory .. 5

2.3.5 Creating a local strings-xx.xml file ... 6
3 Localizing the Semantic Domain list .. 6

3.1 Overview .. 6

3.2 What does a translator do? ... 6
3.3 Converting the SFM file to a SQL script ... 7

3.4 How do you get translations into a database? .. 7

1 Introduction
Provision has been made for localizing most strings in the user interface for FieldWorks

Language Explorer and Translation Editor. Data Notebook and List Editor do not yet

have this capability. It is also possible to add localizations to the semantic domain list.

Here are some limitations with the current strategy.

 The size of dialog boxes do not change, so longer strings may cause problems.

 Dialogs written in C++ (e.g., Backup/Restore, File Open) cannot be localized.

 You can only localize to languages supported by the operating system.

 Each string has a single translation, so it can’t be translated differently in different

contexts.

 We can’t localize icons and other graphics.

2 Localizing the User Interface

2.1 Overview

The localization process involves coordination between the development team and

localization translators, typically located in other countries. The major disadvantage with

this approach is the translator cannot see the results of their work until they receive a new

installer or set of files.

ZEdit Page 2

6/13/2013

This summarizes the localization process.

1. A developer produces a POT translation file based on the current FieldWorks source

files. This file is sent to the translator.

2. The poEdit program is used to convert this into a PO file, or update an existing PO

file for a specific language.

3. The translator uses poEdit to add translations to this PO file.

4. The PO file is sent to a developer.

5. The PO file is merged with any existing PO file for that language.

6. The nightly build process uses the PO file to generate a localized set of DLLs and a

localized strings XML file.

7. The installer includes these localized files

8. Anyone installing FieldWorks via the installer will then be able to use the localized

version.

Flex and TE currently have independent UI languages.

To change the UI language in Flex, use Tools…Options, in the Interface tab choose the

User interface language and the UI changes immediately.

To change the UI language in TE, use Tools…Options, pick the General tab and choose

the User interface language, then restart the program.

Doug Higby has set up a FieldWorks translation project that is accessible from the web at

https://translations.launchpad.net/fwlex and https://translations.launchpad.net/fwte.

Multiple translations can be made at this site.

2.2 What does a developer do?

2.2.1 Creating a POT Translation file

At any time a developer can generate a POT file to send to a localization translator. This

process extracts all translatable strings from resx files and xml files under Language

Explorer\Configuration. The command to generate a POT file from the fw\bin directory

is

LocaleStrings –x

This assumes you want to extract data for all programs and that your RootCodeDir string

variable in HKLM\Software\SIL\FieldWorks is set to the current fw directory. (If

RootCodeDir is not set, it will use the fwroot environment variable if it is set.) If not, then

you’ll need to use other command line options (e.g., -r, --no-flex, --no-te, --pot). The

default output file will be FieldWorks.pot in the fw\bin directory.

2.2.2 Integrating translations into the build process

When a translator returns a PO file for a given locale, it needs to be added into our

Perforce repository. If this is the first Messages.xx.po file for a given locale (xx

represents the locale identifier—see list at http://msdn2.microsoft.com/en-

us/library/system.globalization.cultureinfo.aspx), it can simply be checked into the

fw\Localizations directory. If there is already a Messages.xx.po file for this locale, you’ll

need to merge the changes from the new PO file to the existing file. To do this, use the

following command.

https://translations.launchpad.net/fwte

ZEdit Page 3

6/13/2013

LocaleStrings -m oldfile.xx.po newfile.xx.po

This process will back up the original file (e.g., messages.fr.po-20070524120146) and then

merge the information into the original file. It also generates a log file (e.g., Merge-

20070524120146.log) listing any conflicts. The log file contains a summary of the changes

at the end of the file.

To manually build the localized files, use the following Nant target

nant [release] localize

If you want to build release versions, be sure to include the ‘release’ nant target before

the ‘localize’ target. This process creates individual output\xx directories containing

translatable resource files. These are then compiled into localized dlls in output\debug\xx.

It also creates a strings-xx.xml file in DistFiles\Language Explorer\Configuration for

localizing the Flex XML strings.

The overnight build process creates localized versions and currently adds the fr

localizations to the installer. At a future time the installer will provide options to let the

user decide which localizations to install. On an end-user machine the output\release\xx

directory is stored as a FieldWorks\xx directory, and strings-xx.sml is stored in

FieldWorks\Language Explorer\Configuration.

2.2.3 Upgrading a user .po file to a new version

When a translator returns a PO file for an older version and you need to build dlls for a

new version and want to incorporate the new strings in the po file, use the following steps.

1. Use 2.2.1 to create a new pot file for the new version.

2. Open the user’s po file with poEdit and use Catalog…Update from POT file to add in

the newly created POT file.

3. Edit the updated .po file changing the Project-Id-Version to the new FieldWorks

version.

4. Follow 2.2.2 to generate dlls to return to the user.

5. You can either return the newly created po file to the user (if he hasn’t done any work

in the meantime) or send the pot file and let him merge the new file with his.

2.3 What does a translator do?

PoEdit is a free translation program you can download from the Internet and use to

translate source language strings into target language strings. It provides many useful

features for doing this translation including translation memory.

2.3.1 Initial setup

To prepare for translation, you need to install the poEdit program and create a catalog for

the target language. These are the steps to do this.

1. Download and install poEdit from http://www.poedit.net/download.php.

2. Run poEdit the first time and answer initialization information.

3. Use File…New catalogue from POT file… and select the POT file you received from

the developers. When it asks for information, fill in answers similar to the following

Project name and version: FieldWorks N.N

Team: your name(s)

http://www.poedit.net/download.php

ZEdit Page 4

6/13/2013

Team's email address: your e-mail address

Language: the target language for translation

Country: the target country

Charset: utf-8

Source code charset: utf-8

This process creates a Messages.xx.po file where xx is the target system language

designator you have chosen, such as ‘es’ for Spanish.

2.3.2 Using poEdit

During the translation process, you start poEdit and use File…Open to open the PO file

you created.

The top pane shows the strings in the catalog. Information for the selected string is shown

in the bottom panes. The left contains the source (top) and target (bottom) strings the

right contains source (top) and target (bottom) notes. The source notes come from the

POT file and give information on the source of the string. You can put any information

you want in the target note field. To do this, click the Edit comment button in the toolbar.

ZEdit Page 5

6/13/2013

You can keep track of uncertain translations by using the Fuzzy Translation toggle button

on the toolbar.

Some strings contain templates with placeholders for substrings. For example ‘Edit the

Inflection Classes for {0}.’ During operation, the program will insert a substring into the

string at at the {0} location (e.g., ‘marker’). You can move the placeholders around to

any location in the string template. Where more than one placeholder is present, you can

reorder these as needed. The substring for {1} will be inserted wherever {1} occurs in the

template.

Some strings are designed for menus. They have an underscore preceding the character

that is used as an Alt key shortcut. For example the string ‘_Complex Feature’ will be

displayed in a menu as ‘Complex Feature’ and can be activated by Alt+c. You can

change the location of the underscore to change the shortcut key, but you should be

careful that a given letter is not underlined more than once in any menu.

All of the changes you make are stored in the PO file. When you want to see the results

of your work, you’ll need to send the PO file to a developer to incorporate into the next

nightly build.

Note: At least for FieldWorks 5.4 and earlier, there is an ‘en’ string in the localization

file. This string should be translated to the locale string of the language into which you

are translating. For example, if you are translating into German, this should be ‘de’. Any

other string can cause problems, particularly with TE File…Open.

2.3.3 Merging an updated POT file

As the program changes, you may receive a new POT file from developers where new

strings have been added, others have been changed, and some deleted. To continue

translations, you’ll need to merge the POT file into your PO file. This is done using the

Catalog…Update from POT file… This will add any new strings from the POT file and

delete any strings that are no longer in the POT file.

Caution: If you received a FieldWorks.pot file initially and the update is a Flex.pot file,

you would lose all of the translations for TE. Before merging files, make sure your

original PO file is backed up in a safe place where you can restore it if needed.

2.3.4 Translation memory

PoEdit provides a way to store translated strings in a place where common translations

can be applied to any PO file. This is called translation memory. You can set up

Translation Memory as follows:

1. Choose File…Preferences and go to the Translation Memory tab

2. Click Add to add the abbreviation for your target translation

3. Click ‘Generate database’ to update the translation memory.

4. In the ‘Update translation memory’ dialog, select the path(s) to search for translation

files. The poEdit default is c:\Program Files\poEdit\share\locale.

5. Click Next to select files to use as the source of the translation memory.

6. Click Finish to finish building the translation memory.

You can use the Translation Memory to automatically add translations to your PO file by

choosing Catalog…Automatically translate using TM. Translations added in this way are

ZEdit Page 6

6/13/2013

displayed in yellow with a computer icon to the left. You can click the Fuzzy toggle to

change these to normal translations.

Microsoft provides 12,400 common English words in some 50 languages in a

downloadable file at: http://www.microsoft.com/globaldev/tools/MILSGlossary.mspx.

This could be a valuable starting point.

2.3.5 Creating a local strings-xx.xml file

For localizing Flex, it’s possible to generate strings-xx.xml directly on your machine

without sending your po file to Dallas for processing. This covers most of the menus,

tools, and labels in the detail view. It does not cover dialogs. To see dialog changes you’ll

need to send your po file to Dallas for processing on a full development system.

If you want to generate strings-xx.xml, request LocaleStrings.exe from Dallas. When you

get it, copy it into your c:\Program Files\SIL\FieldWorks directory along with a copy of

your messages.xx.po file, then give the following command in a command window:

LocaleStrings -s c:\Program Files\SIL\FieldWorks\messages.xx.po

You should then see a new strings-xx.xml file in c:\Program

Files\SIL\FieldWorks\Language Explorer\Configuration, and after restarting Flex, you

should see the changes in the UI.

3 Localizing the Semantic Domain list

3.1 Overview

At this point we have a separate approach for localizing the semantic domain list. This

process involves adding translations to a master standard format file and then using some

processes including CC to convert this into a .SQL file. The SQL file can then be

executed on any machine to add these translations to a specific database.

It’s also possible using an extension to this process to prepare a localized version of the

semantic domain file (Templates\SemDom.xml) that can be added to an end user machine

so that it will automatically be included in any new FieldWorks they create on that

machine.

To see translations in the semantic domain list, you need to check the desired writing

system as either a vernacular or analysis writing system in the Writing Systems tab of the

FieldWorks Project Properties dialog.

3.2 What does a translator do?

A translator needs to obtain the SFM file, SemDomV4Template.db, from Dallas. Here is a

small sample from this file illustrating domain 1.1.

\is 1.1
\sd Sky
\sdt
\dd Use this domain for words related to the sky.
\ddt
\qu (1) What words are used to refer to the sky?
\qut
\ex sky, firmament, canopy, vault

http://www.microsoft.com/globaldev/tools/MILSGlossary.mspx

ZEdit Page 7

6/13/2013

\ext
\qu (2) What words refer to the air around the earth?
\qut

To add translations, a translator should type the translation in the *t marker following

each English string. Note this file should be edited as a UTF-8 file. This can be done in

programs such as Word or ZEdit after using Options…ReOpen As…Unicode (UTF-8).

3.3 Converting the SFM file to a SQL script

This process can be done locally, or the SFM file can be sent to Dallas for this processing.

To do it locally, request a set of CC tables and instructions to be sent from Dallas, then

follow the instructions. The result is a SQL file that can be distributed to end users to

install into their databases.

3.4 How do you get translations into a database?

Once you have the SQL script to add translations for semantic domains, anyone can

install it by executing the SQL script. To do this

1. Copy the SQL file to your %ALLUSERSPROFILE%\Application Data\SIL\FieldWorks\Data

directory. (This example assumes the file name is SDAllLoader.sql.

Note: %ALLUSERSPROFILE%\Application Data is c:\Documents and Settings\All

Users\Application Data on Windows XP and c:\ProgramData on Vista.

2. Open a DOS/Cmd box and type the following command line:
 db exec "SDAllLoader.sql" "DbFileName"

If your SQL file is in your FieldWorks\Data directory, you don't need to specify a path.

Otherwise you need to specify a complete path to the file in this command. You need to

substitute your database file name for DbFileName. This will load the file into your

database.

